
www.manaraa.com

www.manaraa.com

Hardware/Software Architectures for Low-Power
Embedded Multimedia Systems

www.manaraa.com

Muhammad Shafique • Jörg Henkel

Hardware/Software
Architectures for Low-Power
Embedded Multimedia
Systems

1  3

www.manaraa.com

ISBN 978-1-4419-9691-6     e-ISBN 978-1-4419-9692-3
DOI 10.1007/978-1-4419-9692-3
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011931865

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Muhammad Shafique
Karlsruhe Institute of Technology
Haid-und-Neu-Str. 7
76131 Karlsruhe
Deutschland
muhammad.shafique@kit.edu

Jörg Henkel
Karlsruhe Institute of Technology
Haid-und-Neu-Str. 7
76131 Karlsruhe
Deutschland

www.manaraa.com

v

Contents

1  �Introduction ��    1
1.1 � Trends and Requirements of Advanced Multimedia Systems �������������    2
1.2 � Trends and Options for Multimedia Processing ����������������������������������    4
1.3 � Summary of Challenges and Issues ���    9
1.4 � Contribution of this Monograph ��   9
1.5 � Monograph Outline ���   13

2  �Background and Related Work ��   15
2.1 � Video Coding: Basics and Terminology ��   15
2.2 � The H.264 Advanced Video Codec: A Low-power Perspective ���������   17

2.2.1 � Overview of the H.264 Video Encoder and Its
Functional Blocks ��   17

2.2.2 � Low-Power Architectures for H.264/AVC
Video Encoder ���   22

2.2.3 � Adaptive and Low-Power Design of the Key
Functional Blocks of the H.264 Video Encoder:
State-of-the-Art and Their Limitations ������������������������������������   24

2.3 � Reconfigurable Processors ��   28
2.3.1 � Fine-Grained Reconfigurable Fabric ���������������������������������������   29
2.3.2 � Leakage Power of Fine-grained Reconfigurable

Fabric and the Power-Shutdown Infrastructure ����������������������   30
2.3.3 � Custom Instructions (CIs): A Reconfigurable

Processor Perspective ��   32
2.3.4 � Reconfigurable Instruction Set Processors ������������������������������   33
2.3.5 � Rotating Instruction Set Processing Platform (RISPP) �����������   35

2.4 � Low-Power Approaches in Reconfigurable Processors ����������������������   43
2.5 � Summary of Related Work ��   45

www.manaraa.com

vivi

3  �Adaptive Low-Power Architectures for Embedded
Multimedia Systems ���   49
3.1 � Analyzing the Video Coding Application for Energy

Consumption and Adaptivity ���   49
3.1.1 � Advanced Video Codecs: Analyzing the Tool Set �������������������   51
3.1.2 � Energy and Adaptivity Related Issues in

H.264/AVC Video Encoder ���   53
3.2 � Energy- and Adaptivity Related Issues for Dynamically

Reconfigurable Processors ��   56
3.3 � Overview of the Proposed Architectures and Design Steps ����������������   59
3.4 � Power Model for Dynamically Reconfigurable Processors ����������������   63

3.4.1 � Power Consuming Parts of a Computation- and
Communication-Infrastructure in a Dynamically
Reconfigurable Processor ��   63

3.4.2 � The Proposed Power Model ��   65
3.5 � Summary of Adaptive Low-Power Embedded

Multimedia System ���   67

4  �Adaptive Low-Power Video Coding ���   69
4.1 � H.264 Encoder Application Architectural Adaptations

for Reconfigurable Processors ��   69
4.1.1 � Basic Application Architectural Adaptations ��������������������������   69
4.1.2 � Application Architectural Adaptations

for On-Demand Interpolation ��   72
4.1.3 � Application Architectural Adaptations for Reducing

the Hardware Pressure ���   75
4.1.4 � Data Flow of the H.264 Encoder Application

Architecture with Reduced Hardware Pressure ����������������������   77
4.2 � Designing Low-Power Data Paths and Custom Instructions ��������������   80

4.2.1 � Designing the Custom Instruction for In-Loop
Deblocking Filter ��   81

4.2.2 � Designing the Custom Instructions
for Motion Estimation ���   85

4.2.3 � Designing the Custom Instruction
for Motion Compensation ���   86

4.2.4 � Area Results for the Custom Instructions
of H.264 Encoder ��   87

4.3 � Spatial and Temporal Analysis of Videos Considering
Human Visual System ���   87
4.3.1 � HVS-based Macroblock Categorization ���������������������������������   92
4.3.2 � QP-based Thresholding ���   93
4.3.3 � Summary of Spatial and Temporal Analysis

of Videos Considering Human Visual System ������������������������   95
4.4 � An HVS-Based Adaptive Complexity Reduction Scheme ������������������   95

4.4.1 � Prognostic Early Mode Exclusion ���   97

Contents

www.manaraa.com

viivii

4.4.2 � Hierarchical Fast Mode Prediction ��   99
4.4.3 � Sequential RDO Mode Elimination �� 100
4.4.4 � Evaluation of the Complexity Reduction Scheme ������������������   100

4.5 � Energy-Aware Motion Estimation with an Integrated
Energy-Budgeting Scheme ��   104
4.5.1 � Adaptive Motion Estimator with Multiple

Processing Stages ��   105
4.5.2 � enBudget: The Adaptive Predictive Energy-

budgeting Scheme ���   111
4.5.3 � Evaluation of Energy-Aware Motion Estimation

with an Integrated Energy-Budgeting Scheme ������������������������   117
4.5.4 � Comparing Adaptive Motion Estimator with

and Without the enBudget Scheme ���   118
4.5.5 � Comparing UMHexagonS with and Without

the enBudget Scheme ��   118
4.6 � Summary of Low-power Application Architecture �����������������������������   121

5  �Adaptive Low-power Reconfigurable Processor Architecture ���������������   123
5.1 � Motivational Scenario and Problem Identification �����������������������������   123

5.1.1 � Summary of the Motivational Scenario
and Problem Identification ��   126

5.2 � Run-time Adaptive Energy Management with the Novel
Concept of Custom Instruction Set Muting ��   126
5.2.1 � Concept of Muting the Custom Instructions ���������������������������   127
5.2.2 � Power-shutdown Infrastructure for the Muted

Custom Instructions ��   128
5.2.3 � Run-time Adaptive Energy Management ��������������������������������   130
5.2.4 � Summary of the Run-time Adaptive Energy

Management and CI Muting ���   132
5.3 � Determining an Energy-minimizing Instruction Set ���������������������������   133

5.3.1 � Formal Problem Modeling and Energy Benefit Function �������   133
5.3.2 � Algorithm for Choosing CI Implementation Versions ������������   135
5.3.3 � Evaluation and Results for Energy-Minimizing

Instruction Set ���   139
5.3.4 � Summary of Energy Minimizing Instruction Set ��������������������   145

5.4 � Selective Instruction Set Muting ���   146
5.4.1 � Problem Description and Motivational Scenarios �������������������   147
5.4.2 � Operational Flow for Selective Instruction Set Muting ����������   148
5.4.3 � Analyzing the Energy Benefit Function of Muting �����������������   150
5.4.4 � Hot Spot Requirement Prediction: Computing

Weighting Factors for CIs ���   152
5.4.5 � Evaluation of Selective Instruction Set Muting ����������������������   153
5.3.6 � Summary of Selective Instruction Set Muting ������������������������   154

5.5 � Summary of Adaptive Low-power Reconfigurable
Processor Architecture ��   155

Contents

www.manaraa.com

viii

6  �Power Measurement of the Reconfigurable Processors �������������������������   157
6.1 � Power Measurement Setup ��   157
6.2 � Measuring the Power of Custom Instructions �������������������������������������   158

6.2.1 � Flow for Creating the Power Model ��   158
6.2.2 � Test Cases for Power Measurements ���������������������������������������   160
6.2.3 � Results for Power Measurement and Estimation ��������������������   162

6.3 � Measuring the Power of the Reconfiguration Process ������������������������   164
6.3.1 � Power Consumption of EEPROM ��   165
6.3.2 � Power Consumption of the Reconfiguration via ICAP �����������   165

6.4 � Summary of the Power Measurement of the Reconfigu-
rable Processors ���   166

7  �Benchmarks and Results ��� 167
7.1 � Simulation Conditions and Fairness of the Comparison ���������������������   168
7.2 � Adaptive Low-power Application Architecture ����������������������������������   169

7.2.1 � Comparing Complexity Reduction Scheme to
State-of-the-art and the Exhaustive RDO-MD ������������������������   169

7.2.2 � Comparing the Energy-Aware Motion Estimation
with Integrated Energy Budgeting Scheme to State-
of-the-art ��   173

7.3 � Adaptive Low-power Processor Architecture �������������������������������������   175
7.3.1 � Comparing the Adaptive Energy Management

Scheme (Without Selective Instruction Set Muting)
to RISPP with Performance Maximization [BSH08c] ������������   175

7.3.2 � Applying the Adaptive Energy Management
Scheme (Without Selective Instruction Set Muting)
to Molen [VWG + 04] Reconfigurable Processor ��������������������   176

7.3.3 � Comparing the Adaptive Energy Management
Scheme (with Selective Instruction Set Muting) to
State-of-the-art Hardware-oriented Shutdown ������������������������   177

7.4 � Summary of the Benchmarks and Comparisons ���������������������������������   180

8  �Conclusion and Outlook ��   183
8.1 � Monograph Summary ��   183
8.2 � Future Work ���   187

Appendix ��   191

Bibliography ��   211

Index ���   221

Contents

www.manaraa.com

ix

Abbreviations and Definitions

ACCoReS	� Adaptive Computational Complexity Reduction Scheme
ADI	� Arbitrary Directional Intra
ALU	� Arithmetic Logic Unit
ASIC	� Application Specific Integrated Circuit
ASIP	� Application Specific Instruction Set Processor
AVC	� Advanced Video Coding
AVS	� Advanced Visual Systems
B-MB	� Bi-directionally predicted  MB (i.e., a prediction is performed from

the previous and future reference frames)
BC	� Bus Connector: Connecting a  DPC to the Computation and Com-

munication Infrastructure
BOPF	� Buffer Overflow Prevention Factor
BU	� Basic Unit, it is a group of  MBs; it defines the granularity at which

the rate controller computes a new QP value
CABAC	� Context-Adaptive Binary Arithmetic Coding
CAVLC	� Context-Adaptive Variable Length Coding
CBR	� Constant Bit Rate
CI	� Custom Instruction
CIF	� Common Intermediate Format (Resolution: 352 × 288)
CIP	� Combined Intra Prediction
cISA	� core Instruction Set Architecture: the part of the instruction set that

is implemented using the core processor pipeline (i.e., non-reconfigu-
rable); it can be used to implement can be used to implement  Cus-
tom Instructions

CLB	� Configurable Logic Block: part of an  FPGA, contains multiple 
LUTs

CPU	� Central Processing Unit
DCSS	� Dynamic Clock Supply Stop
DCT	� Discrete Cosine Transform
DPC	� Data Path Container: a part of the reconfigurable fabric that can be

dynamically reconfigured to contain a Data Path, i.e., an elementary
hardware accelerator

www.manaraa.com

xx

DVFS	� Dynamic Voltage and Frequency Scaling
EAPR	� Early Access Partial Reconfiguration
EE	� Encoding Engine
EEPROM � Electrically Erasable Programmable Read Only Memory
enBudget	� The run-time adaptive Energy Budgeting Scheme
EPZS	� Enhanced Predictive Zonal Search
EQ	� Energy-Quality
FI	� Forecast Instruction: a trigger instruction that indicates a Forecast

Block containing a set of  CIs with an information of the compile-
time analysis (e.g., expected number of executions)

FIFO	� First-In First-Out buffer
FIR	� Finite Impulse Response
FME	� Fractional-pixel Motion Estimation
FMO	� Flexible Macroblock Ordering
FM-CI	� Fully-Muted Custom Instruction
FPGA	� Field Programmable Gate Array: a reconfigurable device that is com-

posed as an array of  CLBs and switching matrices
FPS	� Frames Per Second
FS	� Full Search
GOP	� Group of Pictures with one I-Frame followed by a series of P- and/or

B-Frames
GPP	� General Purpose Processor
HDTV	� High Definition Television
HD720p	� High Definition 720 Lines Progressive Scan (Resolution: 1280 × 720)
HEVC	� High Efficiency Video Coding
HT	� Hadamard Transform
HVS	� Human Visual System
I-MB	� Intra-predicted  MB (i.e., a prediction is performed from the recon-

structed pixels of  MBs from the current frame; it is also called spa-
tial prediction

I4 × 4	� Macroblock is encoded as Intra with prediction is done at 4 × 4 block
sizes

I16 × 16	� Macroblock is encoded as Intra where the whole 16 × 16 block is
predicted

ICAP	� Internal Configuration Access Port
IDCT	� Inverse Discrete Cosine Transform
IEC	� International Electrotechnical Commission
IHT	� Inverse Hadamard Transform
ILP	� Integer Linear Programming
IME	� Integer-pixel Motion Estimation
IP	� Intellectual Property
IPred	� Intra Prediction
IQ	� Inverse Quantization
ISA	� Instruction Set Architecture
ISO	� International Organization for Standardization

Abbreviations and Definitions

www.manaraa.com

xixi

ISS	� Instruction Set Simulator
ITU	� International Telecommunication Union
JVT	� Joint Video Team
KB	� Kilo Byte (also KByte): 1024 Byte
KD	� Derivative Gain
KI	� Integral Gain
KP	� Proportional Gain
LF	� Loop Filter
LUT	� Look-Up Table: smallest element in an  FPGA, part of a  CLB;

configurable as logic or memory
MAD	� Mean of Absolute Differences
MB	� Mega Byte (also MByte): 1024  KB
MB	� Macroblock, a 16 × 16 pixel block of a video frame
MBEE	� Mean Bit Estimation Error
MC	� Motion Compensation
MD	� Mode Decision
ME	� Motion Estimation
MIPS	� Microprocessor without Interlocked Pipeline Stages
MPEG	� Motion Picture Experts Group
MPSoC	� Multiprocessor System-on-Chip
MSE	� Mean Square Error
MV	� Motion Vector
MVC	� Multiview Video Coding
NM-CI	� Non-Muted Custom Instruction
NMOS	� N-type Metal-Oxide-Semiconductor Logic
P-MB	� Inter-predicted  MB (i.e., a prediction is performed from the recon-

structed pixels of  MBs from the previous frame; it is also called
temporal prediction

P8 × 8	� Macroblock is encoded as Inter with sub-block types sizes of 8 × 8 or
below

P16 × 16 � Macroblock is encoded as Inter where the whole 16 × 16 block is
predicted

PC	� Personal Computer
PID	� Proportional-Integral-Derivative
PMOS	� P-type Metal-Oxide-Semiconductor Logic
PSM	� Programmable Switching Matrix
PSNR	� Peak signal-to-noise ratio (units: db)
Q	� Quantization
QCIF	� Quarter Common Intermediate Format (Resolution: 176 × 144)
QP	� Quantization Parameter
RAM	� Random Access Memory
RC	� Rate Controller
RD	� Rate Distortion
RDO	� Rate Distortion Optimization
REMiS	� Run-time Adaptive Energy Minimization Scheme

Abbreviations and Definitions

www.manaraa.com

xiixii

RFU	� Reconfigurable Functional Unit: denotes a reconfigurable region that
can be reconfigured towards a Custom Instruction implementation

RISPP	� Rotating Instruction Set Processing Platform
SAD	� Sum of Absolute Differences
SATD	� Sum of Absolute Transformed Differences
SI	� Special Instruction
SIF	� Source Input Format (Resolution: 352 × 240)
SPARC	� Scalable Processor Architecture: processor family from Sun

Microsystems; used for the  RISPP prototype
SQCIF	� Sub-quarter Common Intermediate Format (Resolution: 128 × 96)
SRAM	� Static Random Access Memory
SSE	� Sum of Squared Differences
TH	� Threshold
UMHexagonS � Unsymmetrical-cross Multi-Hexagon-grid Search
VBR	� Variable Bit Rate
VCEG	� Video Coding Experts Group
VISA	� Virtual Instrument Software Architecture
VLC	� Variable Length Coding: a computational kernel that is used in

H-264 video encoder
VLIW	� Very Large Instruction Word
VM-CI	� Virtually-Muted Custom Instruction
XML	� Extensible Markup Language
XST	� Xilinx Synthesis Technology
YUV	� A video format denoting one Luminance (Luma, Y) and two Chro-

minance (Chroma, UV) Components. A typical resolution given
to video encoders is YUV4:20:0, i.e., a sampling method where
the two chrominance components have just half the resolution in
vertical and horizontal direction as the luminance component

Definitions
Level	� define a constraint on key parameters, e.g., specific resolutions

and bit rates.
Profile	� defines a set of coding tools and algorithms, targeting a specific

class of applications.
Residual	� Difference of current data to the corresponding prediction data.
Slice	� A frame is build up of a number of slices, each containing an inte-

gral number of MBs.

Abbreviations and Definitions

www.manaraa.com

xiii

List of Figures

Fig. 1.1	� Overview of different video services over time ������������������������������    3
Fig. 1.2 	� a Flexibility vs. efficiency comparison of different architec-

tural options; b evolution trend of Xilinx Virtex FPGAs ����������������    5
Fig. 2.1 	� An overview of the digital video structure (showing group

of pictures, frame, slice, MB) and different video resolutions ��������   16
Fig. 2.2 	� Functional overview of the H.264/AVC video encoder ������������������   18
Fig. 2.3 	� Variable block sizes for inter-predicted MBs (P-MBs)

in H.264/AVC ��   18
Fig. 2.4 	� A typical composition of a fine-grained reconfigurable fabric

with a 2D-Array of CLBs and PSMs along with the internal
details of a Spartan-3 Tile ���   29

Fig. 2.5 	� State-of-the-art in power-shutdown infrastructure ��������������������������   31
Fig. 2.6 	� Extending a standard processor pipeline towards RISPP

and the overview of the RISPP run-time system �����������������������������   35
Fig. 2.7 	� Hierarchical composition of custom instructions: multiple

implementation versions exist per custom instruction and
demand data paths for realization ���   36

Fig. 2.8 	� Example control-flow graph showing forecasts
and the corresponding custom instruction executions ��������������������   40

Fig. 2.9 	� Execution sequence of forecast and custom instructions
with the resulting error back propagation and fine-tuning ��������������   41

Fig. 2.10   �Overview of the hardware infrastructure for computation
(data path container) and communication (bus connector)
showing the internal composition of a bus connector ���������������������   42

Fig. 3.1 	� Overview of an H.324 video conferencing application
with H.264/AVC codec ���   50

Fig. 3.2 	� Processing time distribution of different functional blocks
in the H.324 video conferencing application ����������������������������������   51

Fig. 3.3 	� Percentage distribution of energy consumption of different
functional blocks in the H.264 video encoder ���������������������������������   54

www.manaraa.com

xiv

Fig. 3.4 	� Distribution of I-MBs in slow-to-very-high motion scenes
(test conditions: group of pictures=IPPP…, CAVLC,
quantization parameter = 28, 30fps) ��   57

Fig. 3.5 	� Overview of the adaptive low-power application and
processor architectures ��   59

Fig. 3.6	� Highlighting different steps to be performed at design, com-
pile, and run time at both application and processor levels �����������   61

Fig. 3.7 	� Power-relevant components of the computation-
and communication infrastructure to execute CI
implementation versions ���   64

Fig. 3.8 	� Example for a custom instruction (CI) implementation version �����   64
Fig. 4.1 	� Basic application architectural adaptations to construct

the benchmark application. a Adapting reference software.
b Improving data structure. c Profiling and Designing Custom
Instructions ���   70

Fig. 4.2 	� Arrangement of functional blocks in the H.264 encoder
benchmark application ��   71

Fig. 4.3 	� Number of computed vs. required interpolated MBs for two
standard test sequences for mobile devices ������������������������������������   72

Fig. 4.4 	� Distribution of different interpolation cases in the carphone
video sequence ��   73

Fig. 4.5 	� H.264 encoder application architecture with reduced hardware
pressure ���   74

Fig. 4.6 	� Data flow diagram of the H.264 encoder application
architecture with reduced hardware pressure ���������������������������������   78

Fig. 4.7 	� Description and organization of major data structures �������������������   79
Fig. 4.8 	� Steps to create optimized data paths from the standard

formulae ��   81
Fig. 4.9 	� 4-Pixel edges in one macroblock ��   82
Fig. 4.10 	� Pixel samples across a 4 × 4 block horizontal or vertical

boundary ���   82
Fig. 4.11 	� Custom instruction for in-loop deblocking filter with example

schedule ��   83
Fig. 4.12 	� The data paths for filtering conditions and filtering operation

constituting the for custom instruction for in-loop deblocking
filter ���   84

Fig. 4.13 	� Custom instruction for SATD4 × 4 showing the transform and
SAV data paths ��   85

Fig. 4.14 	� Custom instruction for motion compensation showing
different data paths ���   86

Fig. 4.15 	� Mode distribution and video statistics in the 7th frame of
American Football ��   89

Fig. 4.16  �Optimal coding mode distribution in rafting and American
Football sequences at different Quantization Parameter (QP)
values ���   90

List of Figures

www.manaraa.com

xv

Fig. 4.17 	� Directional groups with respect to the edge direction angle
and notion of spatial and temporal neighboring macroblocks ��������   91

Fig. 4.18 	� Mode distribution of frame 4 in Rafting sequence using
the exhaustive RDO-MD for two different QP values: Left:
QP = 16 and Right: QP = 38 ��   94

Fig. 4.19 	� Overview of the adaptive computational complexity reduction
scheme (ACCoReS) showing different processing steps and
MB categorizations ���   96

Fig. 4.20 	� Processing flow of the hierarchical fast mode prediction �����������������   99
Fig. 4.21 	� Percentage mode excluded in ACCoReS for various video

sequences ��   101
Fig. 4.22 	� Distribution of mode processing for QP = 28 ����������������������������������   101
Fig. 4.23 	� Comparison of total SAD computations for various video

sequences ��   102
Fig. 4.24 	� Frame-level in-depth comparison for Susie sequence ��������������������   102
Fig. 4.25 	� Frame-level in-depth evaluation of correct mode prediction ����������   103
Fig. 4.26 	� MB-level mode comparison with the exhaustive RDO-

MD: frame 17 of American Football. Top: ACCoReS
[PSNR = 33.28 dB], Bottom: Exhaustive RDO-MD
[PSNR = 34.52 dB] ��   103

Fig. 4.27  �Motion vector difference distribution in Foreman sequence
(256 kbps) for various predictors compared to the optimal
motion vector (obtained using the full search algorithm) ���������������   106

Fig. 4.28	 Predictor conditions for motion-dependent early termination���������   107
Fig. 4.29 	� Four search patterns used in the adaptive motion estimator and

the pixel-decimation patterns for SAD computation ����������������������   108
Fig. 4.30 	� Flow of the enBudget scheme for energy-aware

motion estimation ��   111
Fig. 4.31 	� Energy-Quality (EQ) classes: energy-quality design

space exploration showing various pareto points
and the pareto curve ��   113

Fig. 4.32 	� SAD vs. energy consumption comparison of different motion
estimation stages for Foreman sequence ���   114

Fig. 4.33 	� Energy and quality comparison for the adaptive motion
estimator with and without the enBudget for various video
sequences ��   118

Fig. 4.34 	� Energy and quality comparison for the UMHexagonS
[CZH02] with and without the enBudget for various video
sequences ��   118

Fig. 4.35 	� Frame-wise energy consumption of the energy-aware motion
estimation ��   119

Fig. 4.36  �Macroblock-wise energy consumption map of two exemplary
frames in the SusieTableMix_QCIF sequence for a 90 nm
technology ���   120

List of Figures

www.manaraa.com

xvi

Fig. 4.37 	� Energy consumption of the energy-aware motion estimation
for various FPGA fabrication technologies for various video
sequences ��   120

Fig. 5.1 	� Simplified comparison of energy consumption, highlighting
the effects of different reconfiguration decisions ���������������������������   125

Fig. 5.2 	� Infrastructure necessary to exert the proposed CI muting
technique ���   129

Fig. 5.3 	� Muting the temporarily unused instruction set �������������������������������   129
Fig. 5.4 	� Overview of the proposed adaptive low-power reconfigurable

processor with run-time adaptive energy management along
with the design-, compile-, and run-time steps �������������������������������   130

Fig. 5.5 	� Search space of five CIs with their implementation versions
at the corresponding levels and the path of the energy-
minimizing instruction set ��   136

Fig. 5.6 	� Energy-performance design spaces: evaluation of the energy
minimization space using the adaptive energy management
scheme under various area and performance constraints
for four fabrication technologies for an encoding of 40 QCIF
(176 × 144) frames ���   141

Fig. 5.7 	� Comparison of energy components in different fabrication
technologies under various area constraints �����������������������������������   142

Fig. 5.8 	� Comparing energy-performance design spaces for different
video resolutions when using the energy management scheme
under various area and performance constraints for an
encoding of 60 video frames ���   143

Fig. 5.9 	� CI Execution results for 30 fps on 65 nm showing a detailed
breakdown of energy components highlighting the contribu-
tion of reconfiguration and leakage energy. The lower graph
shows the detailed execution pattern of various CIs executing
in different hot spots of the H.264 video encoder along with
total energy consumption ��   144

Fig. 5.10 	� Comparing the energy requirements of virtually- &
fully-muted CIs for two scenarios ��   147

Fig. 5.11 	� Time-line showing the execution sequence of hot spots
and the situation for a CI muting decision ��������������������������������������   148

Fig. 5.12   �Flow for selecting a muting mode for the custom instruction
(CI) set ���   149

Fig. 5.13 	� Venn diagram showing the data path requirements
of previous, current, upcoming hot spots ��   149

Fig. 5.14   �Calculating the weighting factor for custom instructions
w.r.t. the application context ���   153

Fig. 5.15 	� Summary of energy benefit of using selective instruction set
muting ���   154

Fig. 6.1 	� a Measurement setup, b The in-house developed power
supply board ��   158

List of Figures

www.manaraa.com

xvii

Fig. 6.2 	� Flow for creating the measurement-based power model ����������������   159
Fig. 6.3 	� Test case and setup for measuring the power of an idle

(empty) framework ���   159
Fig. 6.4 	� Different test cases for measuring the power of different

components of a custom instruction (CI)
implementation version ���   160

Fig. 6.5 	� Connection of FIFO between EEPROM and ICAP ������������������������   164
Fig. 6.6 	� a EEPROM voltage drop while loading one Data Path

Bitstream from EEPROM to FPGA. b VCCINT voltage drop
for transferring one Data Path bitstream to ICAP and
performing the corresponding reconfiguration ��������������������������������   165

Fig. 7.1 	� Comparing the energy savings and quality loss
of the ACCoReS with several state-of-the-art fast
mode decision schemes ���   170

Fig. 7.2 	� Energy savings and quality loss of the ACCoReS
compared to the exhaustive RDO-MD for CIF resolution
video sequences ���   170

Fig. 7.3 	� Energy savings and quality loss of the ACCoReS
compared to the exhaustive RDO-MD for QCIF
resolution video sequences ��   171

Fig. 7.4 	� Comparing the rate distortion curves for QCIF
and CIF sequences ���   172

Fig. 7.5 	� Power test with a real battery using Mobile sequence ��������������������   172
Fig. 7.6 	� Summary of energy savings of the enBudget scheme

compared to various fast adaptive motion estimation schemes �������   173
Fig. 7.7 	� Comparing energy saving and PSNR loss of the proposed

energy-aware motion estimation and the enBudget scheme
with various fast adaptive motion estimators. (* negative
PSNR loss actually shows the PSNR gain of the scheme) ��������������   174

Fig. 7.8 	� Energy comparison of the AEM_FM and RISPP_PerfMax
schemes for 65 nm ���   175

Fig. 7.9 	� Average energy comparison of the AEM_FM and RISPP_
PerfMax for three technologies ���   176

Fig. 7.10   �Percentage energy saving of Molen [VWG + 04] plus AEM_
FM over Molen without AEM_FM for three technologies �������������   177

Fig. 7.11 	� Comparing the energy breakdown of the adaptive energy
management scheme (with selective instruction set muting) to
[Ge04]-based pre-VM and [MM05]-based pre-FM ������������������������   178

Fig. 7.12 	� Energy comparison of the adaptive energy management
scheme with [Ge04]-based pre-VM and [MM05]-based pre-
FM techniques for varying amount of reconfigurable fabric ����������   179

Fig. 7.13  �Energy savings of the adaptive energy management scheme
compared to the [Ge04]-based pre-VM technique ��������������������������   180

Fig. A.1 	� Comparison of produced bits with and without rate control �����������   192

List of Figures

www.manaraa.com

xviii

Fig. A.2 	� The multi-level rate control scheme covering GOP,
frame/slice, & BU levels along with image and motion
based macroblock prioritization ��   195

Fig. A.3 	� Critical Ziegler-Nichols-point for American Football ��������������������   196
Fig. A.4 	� Temporal distance based QP calculation for B frames/slices ���������   196
Fig. A.5 	� Basic unit (BU) level RC with texture and motion based QP

adjustments ���   198
Fig. A.6 	� RD-curves comparison of the proposed multi-level RC

with RC-mode-3 for carphone (QCIF, IPPP) and American
Football (SIF, IBBP) ���   199

Fig. A.7 	� MBEE comparison of the multi-level RC with three different
RC modes ���   200

Fig. A.8 	� Frame-wise comparison of the multi-level RC with RC-
mode-3 for fast motion combined CIF sequences encoded
at 2 Mbps@30 fps ��   201

Fig. A.9 	� Frame-wise comparison of the multi-level RC with
RC-mode-0 for Susie mixed CIF sequence ( Bright, Dark,
Noisy) at 2 Mbps@30 fps ���   201

Fig. A.10   �Evaluating the image and motion based MB prioritizations
(Note: All excerpts are 2× zoomed using nearest neighbor
interpolation) ��   202

Fig. B.1 	� Simulation methodology showing various steps of the
simulation procedure ��   203

Fig. B.2 	� Reconfigurable processor simulator with the extensions
implemented in the scope of this monograph for run-time
adaptive energy-management ���   204

Fig. B.3 	� a H.264 video encoder executing on the RISPP prototype;
b Floorplan of the RISPP prototype implementation on the
Xilinx Virtex-4 LX 160 FPGA ���   206

Fig. B.4 	� H.264 video encoder executing on the TI’ DM6437
DSP board ���   207

Fig. B.5 	� Flow for porting H.264 Encoder on DM6437 digital signal
processor ���   208

Fig. C.1 	� The CES video analyzer tool showing the research framework
for motion estimation, video merging, and texture analysis ����������   209

List of Figures

www.manaraa.com

xix

List of Tables

Table 2.1   ��High-level properties of implementation version and custom
instruction ���   39

Table 3.1   �Comparing the coding tool set of various video encoding
standards ���   52

Table 4.1   �Custom instructions and data paths for the H.264 video
encoder ���   76

Table 4.2  � Implementation results for various data paths of the H.264
video encoder ���   87

Table 4.3  � Thresholds and multiplying factors used in ACCoReS ������������������   94
Table 4.4   �Summary of PSNR, bit rate, and speedup comparison

for various video sequences (each encoded using eight
different QPs) ���   101

Table 4.5  � Comparing the video quality of different SAD decimation
patterns for encoding of Susie CIF video sequence
(30fps@256 kbps) ��   110

Table 4.6  � Configuration and energy consumption for the chosen
Energy-Quality (EQ) classes ��   114

Table 4.7  � Coefficients and thresholds used by the algorithm of
enBudget in Algorithm 4.4 ���   117

Table 4.8  � Performance, area, and energy overhead of enBudget �������������������   121
Table 5.1  � Various custom instruction (CI) muting modes ������������������������������   128
Table 5.2  � Parameters and evaluation conditions with their

corresponding reference sources ��   140
Table 5.3   �Hardware implementation results for the energy management

scheme on the RISPP prototyping platform (see Fig. 6.1
in Sect. 6.1) ���   145

Table 6.1   �Different placement combinations of two transform Data
Paths for power measurement ��   162

Table 6.2   �Measured power results for various data paths & HT4 × 4
implementation versions ��   162

www.manaraa.com

xx

Table 6.3  � Parameters of power model for the CI implementation
versions ���   162

Table 6.4   �Power consumption and latencies of different implementation
versions (using different amount of DPCs) for various custom
instructions for 65 nm and 40 nm technologies������������������������������   163

List of Tables

www.manaraa.com

xxi

List of Algorithms

Algorithm 4.1 � The Filtering Process for Boundary Strength = 4 ������������������   82
Algorithm 4.2 � Pseudo-Code of Group-A for Prognostic Early

Mode Exclusion ���   97
Algorithm 4.3 � Pseudo-Code of Group-B for Prognostic Early

Mode Exclusion ���   98
Algorithm 4.4 � Pseudo code of the Run-Time Adaptive Predictive

Energy-Budgeting Scheme ���   116
Algorithm 5.1 � Pseudo code of Determining the Energy Minimizing

Instruction Set ��   137
Algorithm 5.2 � Pseudo Code for Finding a Data Path for

Virtually-Muting Mode ��   151

www.manaraa.com

11

The unremittingly increasing user demands and expectations have fueled the
gigantic growth for advanced multimedia services in mobile devices (i.e., embedded
multimedia systems). This led to the emergence of high-performance image/video
signal processing in such mobile devices that are inherently constrained with limited
power/energy availability. On the one hand, advanced multimedia services resulted
in the evolution of new multimedia standards with adaptive processing while
providing high quality, increased video resolutions, increased user-interactivity, etc.
As a result, the next generation applications executing on the embedded multimedia
systems exhibit high complexity and consume high energy to fulfill the end-user
requirements. On the other hand, the battery capacity in mobile devices is increasing
at a significantly slow rate, thus posing serious challenges on the realization of
next-generation (highly-complex) multimedia standards on embedded devices.
Further parameters that affect the design of an embedded multimedia system are
long device charging cycles, cost, short time to market, mass volume production,
etc. Besides these constraints and parameters, the intense market competition has
created a multi-dimensional pressure on the industry/research to provide innovative
hardware/software architectures for high-performance embedded multimedia
systems with low power/energy consumption. Due to the context-aware processing
in the emerging multimedia standards, the need for user-interactivity, and frequent
product upgrades (in a short-time-to-market business model) have introduced a
new dimension of run-time adaptivity to the overall requirements of the emerging
embedded multimedia systems in order to react to the run-time changing scenarios
(e.g., quality and performance constraints, changing battery levels).

Besides image and graphic processing, video coding is a primitive application
of a mobile multimedia system. Advances in video compression standards continue
to enable high-end video applications (like video conferencing/video calls, personal
video recording, digital TV, internet video streaming, etc.) with high video quality,
bigger video resolutions, and lower bit rates on battery-constrained mobile devices.
This may lead to a workload of more than 35 G operations per second at a power
budget of less than 300 mW [Ber09]1. Advanced video codecs may consume a sig-

1  Today’s Li-ion batteries provide about 800 mAh at 3.7 V, or nearly 3 W h [Ber09].

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3_1, © Springer Science+Business Media LLC 2011

Chapter 1
Introduction

www.manaraa.com

2

nificant amount of processing time and energy due to their adaptive processing
to provide better compression. However, encoding effort highly depends upon the
characteristics of the input video sequence and the target bit rates. Therefore, under
changing scenarios of input data characteristics and available energy budgets, em-
bedded solutions for video encoding need to consider run-time adaptivity.

1.1  �Trends and Requirements of Advanced Multimedia
Systems

Typically, mobile multimedia devices range from Laptops (24–49 W/h battery) to
Tablets (5–10 W/h battery) to Pocket mobile devices (3–5 W/h battery) [Tex10a].
According a device survey “the Future Image WIRE” [Esp04], the sales growth of
camera phones have exploded from 25 to 450 Million units. Typical multimedia
applications executing on such mobile devices are:

•	 Digital Video: video calls/conferencing, personal video recording, video play-
back, digital TV, video pre-/post-processing (like adaptive noise filtering, de-
interlacing, edge enhancement), etc.

•	 Digital Image: photography, image processing, etc.
•	 Digital Audio: voice calls, audio recording, audio playback, etc.
•	 Games: game processing, rendering, etc.
•	 Display processing: brightness and contrast adjustment, up-/down-scaling, etc.

The increasing complexity of multimedia applications requires extreme computa-
tional capability from the underlying hardware platform. Over the last two decades,
the video coding standards have evolved from MPEG-1 to H.264 to Multiview Vid-
eo Coding for 3D videos. Moreover, the video resolutions have been increased from
QCIF (Quarter Common Intermediate Format, 176 × 144) to SD (Standard Defini-
tion, 720 × 480) to HDTV (High Definition, 1920 × 1080). A radical increase is fore-
seen leading towards the UDTV (Ultra high-definition resolutions) to Realistic TVs
(see Fig. 1.1) requiring a computational complexity of approximately 10,000× (rel-
ative to MPEG-4 QCIF@30fps) [Hui10; MBNN10]. Note, H.264 [ITU05] is one
of the latest video coding standards that provides double compression compared to
previous coding standards (e.g., MPEG-2, H.263, etc.) at the cost of additional com-
putational complexity and energy consumption (~ 10× relative to MPEG-4 advance
simple profile [OBL+04]). Besides higher resolutions, the key reason of increasing
video coding complexity is the complex tool set of advanced video encoders. The
authors in [MBNN10] state an expected increase in the video complexity by 2× ev-
ery 2 years. Although, high resolutions are mainly targeted for high-end multimedia
devices, multiview video conferencing or personal recording at HD (or Quad-HD,
3840 × 2160 or 4096 × 2304) resolution is foreseen within next 5 years on mobile
devices [Nok10]. Industrial prototypes like [Nok10; WUS+08] have already demon-
strated the feasibility of 3D-videos and Multiview Video Coding on mobile devices
using two views. In short, realization of advanced video coding of high resolution

1 Introduction

www.manaraa.com

3

videos on the battery-powered mobile devices demands high complexity reduction
and low power consumption. Moreover, with the evolution of context-aware pro-
cessing in advanced video coding standards, exploitation of parallelism is becoming
more and more challenging [CK08; CLZG06].

Besides the above-discussed issues, run-time adaptivity has evolved as an impor-
tant system attribute to facilitate user interaction and to react to the unpredictable
scenarios in order to efficiently utilize the available energy resources. Moreover,
scalability to different video resolutions and coding standards (i.e., different video
algorithms) is required, which demands for an adaptive architecture for mobile
devices.

Summarizing:  The fundamental requirements of the next-generation embedded
multimedia systems are:

•	 high performance to support bigger video resolution and higher frame rates
•	 high video quality at reduced bit rates
•	 (ultra) low power consumption
•	 adaptivity to the changing scenarios of available power resources, changing user

constraints (different video resolutions, frame rates, bit rates, etc.)

1.1 Trends and Requirements of Advanced Multimedia Systems

Fig. 1.1   Overview of different video services over time

Selective Customized Creative

~2012

~2020

Internet
Protocol TV

Intelligent High
Definition TV

Ultra High
Definition TV

Stereoscopic
3DTV

Mobile Internet
Protocol TV

Realistic
TV

Internet
Broadcast

Color TV Internet
TV

Video on
Demand

R
ea

lis
ti

c
T

V
T

V
A

u
d

io

High
Definition TV

Radio
Digital Audio
Broadcasting

Black&White
TV Digital

Multimedia
Broadcast

Portal TV

Multiview
3DTV

~2006

Simple Viewing

www.manaraa.com

4

•	 reduced chip area
•	 supporting different video format
•	 supporting multiple video coding standards
•	 programmability to have quick and easy application upgrades/updates
•	 reduced cost, (ultra) high production volumes, short time-to-market, and strong

market competition

Considering the above-discussed design challenges, for a fast design turnaround
time without entire system redesign, adaptive low-power processor and application
architectures (with the support of hardware acceleration) for embedded multimedia
are highly desirable.

1.2  �Trends and Options for Multimedia Processing

Figure 1.2 shows traditional embedded approaches like Application Specific Inte-
grated Circuits (ASICs), Digital Signal Processors (DSPs), Application-Specific In-
struction Set Processors (ASIPs), and multimedia Multi-Processor System-on-Chip
(MPSoCs) [Hen03]. These approaches do not necessarily meet all of the above-
mentioned design challenges. Each of these has its own advantages and disadvan-
tages, hence fails to offer a comprehensive solution to next generation complex
mobile multimedia applications’ requirements.

ASICs target specific applications where the ‘performance per area’ and ‘perfor-
mance per power consumption’ can be optimized specifically. However, besides a
high initial cost, the design process of ASICs is lengthy and is not an ideal approach
considering short time-to-market. Moreover, ASICs lack flexibility (i.e., cannot
perform tasks that were not considered while designing that ASIC and implement-
ing modifications/enhancements may result in a costly redesign) and adaptivity,
thus hard to adapt to standard evolutions and market/technology induced changes.
Let us consider a scenario of video coding as a part of a mobile multimedia system.
Advanced video codecs (like H.264 [ITU05], Microsoft VC1 [Mic10a, b], Chinese
Audio Video Standard [YCW09]) exhibit a large set of tools to support a variety
of scenarios and applications (e.g., low bit-rate video conferencing, high-quality
personal video recording, HDTV, etc.). A generic ASIC for all tools is impracti-
cal and will be huge in size. In contrast, multiple ASICs for different applications
have a longer design time and thus an increased Non-Recurring Engineering (NRE)
cost. Moreover, when considering multiple applications (video encoder is just one
application) running on one device, programmability is inevitable (e.g., to support
task switching). Another use case scenario may be realized when (for example)
H.264 video codec is an upgrade to the codec (from a previous generation) in a pre-
existing video recording system. ASICs—due to lack of adaptivity and program-
mability—may perform inefficient or fail to support such scenarios. Therefore, pro-
grammable and reconfigurable/adaptive solutions for multimedia (especially video
coding) have evolved as an attractive design approach.

1 Introduction

www.manaraa.com

51.2 Trends and Options for Multimedia Processing

Fig. 1.2   a Flexibility vs. efficiency comparison of different architectural options; b evolution
trend of Xilinx Virtex FPGAs

“Hardware Solution”

ASICs
- Non-programmable,
- highly specialized

DSPs
- programmable,
- DSP ISA, VLIW

GPPs

“System Requirement ”
Adaptive and Low-Power

Multimedia

Multimedia MPSoCs
- DSP+ASIC+ASIP,
- Design-time selection

Reconfigurable
Computing
- adaptive,
- hardware accelerators

“Software
Solution”

Flexibility, 1/time-to-market, ...

E
ffi

ci
en

cy
:

M
ip

s/
$,

 M
H

z/
m

W
,

M
ip

s/
ar

ea
, .

..

ASIPs
- ISA extension,
- parameterization

1000

1500

0

500

Si
ze

 (L
og

ic
C

el
ls

) [
K

]

2000

V

(220)

(2.5)

(180)

(1.8)

(150)

(1.5)

(130)

(1.5)

(90)

(1.2)

(65)

(1.0)

(40)

(1.0)

(28)

(1.0)

Technology (nm)

Voltage (V)

V-E V-II V-4 V-5 V-6 V-7V-IIP

a

b

www.manaraa.com

6

Unlike ASICs, DSPs offer high flexibility and a lower design time. Consider-
ing a software-based multimedia system, compared to General Purpose Processors
(GPPs), DSPs provide better ‘performance per area’ and ‘performance per power
consumption’. It is because of their specialized assembly, specialized functional
units, and exploitation of instruction level parallelism by using VLIW (Very Long
Instruction Word) architecture, i.e., multiple instructions executing in parallel in the
same cycle. Commercial solutions are from Philips Nexperia (PNX1500; PNX1700,
Nexperia media processor PNX952x family) [Phi10] and from Texas Instruments
(DaVinci and OMAP series) [Tex10a, b]. However, DSPs alone may not satisfy the
power and/or performance challenges when considering the combination of tight
power budgets on battery-powered mobile devices and intricate processing nature
of next-generation multimedia algorithms. Moreover, DSP performance is limited
by the available data bandwidth from the external memory [KRD+03; SHS08]. Al-
though stream architecture [KRD+03] provides an efficient memory hierarchy to
exploit the concurrency and data locality, it exploits a limited amount of parallelism
(e.g., only data level parallelism) [Ste09]. Therefore, dedicated hardware accelera-
tors are inevitable as they provide a high-degree of instruction and data level paral-
lelism to meet applications’ requirements with a limited power budget.

ASIPs overcome the shortcomings of DSPs and ASICs, with an application-
specific instruction set that offers a high flexibility (than ASICs) in conjunction with
a better efficiency in terms of ‘performance per area’ and ‘performance per power
consumption’ (compared to GPP and DSPs). Tool suites and architectural IP for em-
bedded customizable processors with different attributes are available from major
vendors like Tensilica [Ten], CoWare [CoW], ARC [ARC], Stretch [Str], etc. ASIPs
may offer a dedicated hardware implementation for each application kernel but this
typically requires a large silicon footprint. However, for large applications featuring
many kernels (instead of a few exposed ones), current ASIP concepts struggle. In
fact, customization for many kernels may bloat the initial small processor core to
considerably larger sizes (factors of the original core processor). Moreover, while
scrutinizing carefully, in complex multimedia applications based on an advanced
video codec (like H.264), it was noticed that these kernels are not active at the same
time (see detailed analysis in Chap. 3). Still, the sequential execution pattern of the
application execution may only utilize a certain portion of the additionally provided
hardware accelerators at any time, thus resulting in an inefficient resource utiliza-
tion and may become power inefficient.

Another trend is heterogeneous Multimedia MPSoCs that integrate several
programmable processors (GPPs, DSPs), domain-specific weakly programmable
coprocessors, and application-specific hardware accelerators (ASIPs, ASICs) using
an on-chip communication structure to deliver higher performance. Commercial
vendors have transformed their approaches from pure DSPs to multimedia MPSoCs
where one or more DSP cores are coupled with programmable ARM cores and/or
dedicated hardware accelerators. Prominent examples are Philips Nexperia [Phi10],
Nomadik multimedia processor by STMicroelectronics [STM06], and Texas Instru-
ments’ DaVinci technology and OMAP processor series [Tex10a, b]. The selection

1 Introduction

www.manaraa.com

7

of cores in an MPSoC is determined at design time depending upon the require-
ments of a certain set of applications. Therefore, such an MPSoC does not pro-
vide the demanded efficiency when executing applications from different domains.
Moreover, with a change in the application standard (e.g., a different video coding
standard) the currently-used MPSoC becomes obsolete (as it may not fulfill the
required performance and power design constraints for the end-product). Therefore,
when using state-of-the-art multimedia embedded processors, the performance or
power constraints may be achieved in a certain context, but the inability to react
to the above-mentioned uncertainties (i.e., changing standards, unpredictable sce-
narios, and application behavior) and the resulting efficiency (in terms of power,
performance, etc.) issues remain.

Field Programmable Gate Arrays (FPGAs) provide a platform solution with
low NRE cost, faster time-to-market, and longer product lifetime, thus becoming
more popular and mainstream [Te06]. With the continuing evolution of FPGAs (see
Fig. 1.2, [Xil10a])2, various architectures have emerged that embed a reconfigu-
rable fabric (i.e., an embedded FPGA) within a core processor pipeline (e.g., MIPS,
SPARC, VLIW) [Ama06; BL00; Bob07; CH02; Har01; HM09; TCW+05; VS07].
These so-called dynamically reconfigurable processors bridge the gap between
ASICs/ASIPs and DSPs/GPPs by combining the performance and efficiency (due
to their capability to exploit high degree of parallelism) of dedicated accelerators3
(implemented using an embedded FPGA) with a high degree of adaptivity/flexibil-
ity (due to their programmability and hardware reconfigurability). The reconfigu-
rable fabric can be reconfigured at run time to contain hardware accelerators, thus
allowing a new dimension of adaptivity even after the fabrication and deployment.
The adaptive nature of dynamically reconfigurable processors enables:

•	 feature updates of a given multimedia standard, e.g., a video encoder is enhanced
with further coding tools to improve the compression efficiency,

•	 a standard upgrade, e.g., an existing H.263 video encoder is replaced by a newer
version of an H.264 video encoder to provide better compression and quality,

•	 product upgrade, e.g., new hardware accelerators are loaded to expedite a new
multimedia application in the next product release,

•	 improved product efficiency, e.g., an application designer can design new hard-
ware accelerators of an existing application to expedite more kernels to achieve
higher performance or improved video quality (like a new post-processing filter)
that are determined by the new user market,

•	 hardware/software upgrades, e.g., new configuration bitstream of a hardware ac-
celerator may replace the older one in order to provide low power and/or high
performance,

•	 incremental design to cope with time-to-market issues.

2  An increase of 20× in the logic density over the last 15 years [Xil10a].
3  These accelerators are similar to those that are deployed by ASIPs.

1.2 Trends and Options for Multimedia Processing

www.manaraa.com

8

This flexibility comes at the cost of increased area and power due to the recon-
figurability and the structure of an FPGA-like fabric. Besides addressing the inef-
ficient area utilization problem of ASIPs, Dynamically reconfigurable processors
overcome the increased area issue by reusing the hardware in time-multiplex, while
still providing a high-degree of parallelism. These processors partition their recon-
figurable fabric into so-called containers that may load hardware accelerators at run
time to implement so-called Custom Instructions that are then deployed to actually
expedite the application’s kernels. After the execution of a kernel is completed, the
reconfigurable fabric may be allocated to Custom Instructions of other kernels or
even to other applications by performing a dynamic reconfiguration of the accel-
erators. However, the process of reconfiguration incurs additional power overhead
and latency (see details in Chap. 6). Moreover, with the evolution of sub-micron
fabrication technologies, the consideration of leakage power/energy4 has become
imperative in the energy-aware design of reconfigurable processors.

Exploiting high-degree of parallelism allow dynamically reconfigurable proces-
sors to run at lower operating frequencies, thus providing a mean to low power con-
sumption. Consequently, a high-degree of parallelism also corresponds to increased
area and power (due to reconfiguration, leakage, and dynamic switching) require-
ments. Moreover, the execution frequency of the accelerators highly depends upon
the input data that may significantly change at run time. Therefore, a tradeoff be-
tween the performance and power consumption needs to be evaluated at run time
depending upon the system constraints (e.g., available hardware area, required ap-
plication performance, input data, etc.). Furthermore, adaptivity provides a mean to
react to the changing scenarios in order to efficiently exploit the available energy
resource (due to changing battery levels).

State-of-the-art approaches in reconfigurable processors have mainly concen-
trated on improving the performance by reconfiguring application-specific hard-
ware accelerators at run time to meet applications’ demands and constraints. These
processors lack of efficient energy management features. Lately, power reduction
for reconfigurable fabric (like FPGAs) has become a key research interest as it will
be discussed in Chap. 2. Similar to the low power approaches in ASICs, hardware
shutdown may be performed to reduce the leakage energy of reconfigurable pro-
cessors considering the usage of the reconfigurable hardware, i.e., statically deter-
mining the parts of a reconfigurable fabric to be shutdown. However, due to the
adaptive nature and time-multiplexed usage of the reconfigurable fabric, it cannot
be determined at compile time which hardware accelerators will be reconfigured on
which parts of the reconfigurable fabric. Therefore, state-of-the-art hardware shut-
down approaches may perform inefficient in such scenarios as they suffer from the
limitation of inflexibility and are highly dependent upon the underlying shutdown
policy. This monograph aims at raising the abstraction level of shutdown decision
to the instruction set level (see details in Chap. 5) that enables a far higher potential

4  The key reasons of increased leakage power in the sub-micron fabrication technologies are short-
er device/transistor dimensions, reduced threshold voltage, high transistor density, etc.

1 Introduction

www.manaraa.com

9

for leakage energy savings and opens new avenues for researching efficient energy
management schemes for dynamically reconfigurable processors.

1.3  �Summary of Challenges and Issues

Multimedia systems with advanced video codecs (H.264, Microsoft VC1, etc.) em-
ploy a complex tool set to provide better quality/compression at the cost of signifi-
cantly increased computational processing and power requirements (see details in
Chaps. 2 and 3). Moreover, rapid standard evolution, users’ demands for higher
video resolution, incremental application upgrades on mobile devices pose addi-
tional research challenges related to adaptivity and low power consumption. Hence,
for designing an adaptive low-power multimedia system there is a need to combat
the above-discussed issues at all abstraction levels. Besides employing a low-power
device technology (low-power cell library) and operating-system level power man-
agement, the low-power and adaptivity related issues need to address at both pro-
cessor architecture and application architecture levels [FHR+10]. There are several
scenarios that cannot be effectively predicted at design-/compile-time. In such sce-
narios, if an embedded multimedia system is not capable of adapting appropriately,
it would give away some of the potential power savings [FHR+10]. Therefore, in
order to cope with unpredictable scenarios, the next-generation low-power multi-
media systems need to be able to adapt at run time to efficiently utilize the available
energy resources, even though adaptivity comes at the cost of a power overhead.
A tradeoff between the reconfiguration and leakage reduction needs to be evalu-
ated at run time. This instigates the need for processor architectures with run-time
reconfiguration and adaptation of the application architecture to exploit the low-
power capabilities of the underlying processor architecture (run-time reconfigura-
tion, high-degree of parallelism, higher abstraction level of power-shutdown, etc.).

This monograph aims at addressing the issues related to adaptivity and low pow-
er consumption jointly at processor and application levels under run time varying
scenarios of available area, available energy budget, and user constraints. To sup-
port processor level adaptivity dynamically reconfigurable processors are used as a
target computing platform.

1.4  �Contribution of this Monograph

This monograph aims at achieving a high energy efficiency for dynamically re-
configurable processors (and reconfigurable computing in general) enabling adap-
tive embedded multimedia systems with low power/energy consumption to provide
means for next-generation mobile multimedia applications and emerging multime-
dia standards. The key goals are to exploit the available potential of energy re-
duction in dynamically reconfigurable processors while meeting the performance
constraint and keeping the video quality degradation unnoticeable, under run-time

1.4 Contribution of this Monograph

www.manaraa.com

10

varying scenarios (due to changing video properties, available energy resources, us-
er-defined constraints, etc.). This monograph presents novel techniques for adaptive
energy management at both processor architecture and application architecture
levels, such that both hardware and software adapt together in order to minimize the
overall energy consumption under design-/compile-time unpredictable scenarios.

The adaptive low-power processor architecture employs the novel concept
of Selective Instruction Set Muting that allows to shun the leakage energy at the
abstraction level of Custom Instructions, i.e., an instruction set oriented shutdown.
State-of-the-art low-power schemes employ power-shutdown considering the state/
usage of the hardware (i.e., a hardware-oriented shutdown) to reduce the leakage
power/energy. As discussed earlier, when targeting reconfigurable processors, it
cannot be determined at compile time which parts of the instruction set will be
reconfigured on which part of the reconfigurable fabric. Therefore, unlike state-of-
the-art, the proposed Selective Instruction Set Muting raises the abstraction level of
shutdown to the instruction set level. Multiple Custom Instruction muting modes
are introduced each providing a certain tradeoff between leakage energy saving
and reconfiguration energy overhead. The proposed concept relates leakage energy
to the execution context of an application, thus enabling a far higher potential for
leakage energy savings. The associated potential energy savings have not been ex-
ploited by state-of-the-art approaches [CHC03; Ge04; MM05; Te06]. This mono-
graph aims at exploiting this potential. It is especially beneficial for highly flexible
Custom Instruction set architectures like in [Bau09; VWG+04]. Moreover, based on
the concept of Selective Instruction Set Muting, a run-time adaptive energy manage-
ment scheme investigates the tradeoff between leakage, dynamic, and reconfigura-
tion energy for a given performance constraint, thus dynamically moving in the
energy-performance design space.

The adaptive low-power application architecture employs the novel concept
of Energy-Quality Classes and video properties dependent adaptive complexity re-
duction in order to realize the adaptive low-power video encoding. The proposed
Energy-Quality Classes represent a particular Motion Estimation configuration that
requires a certain energy while providing a certain video quality. It thereby enables
a run-time tradeoff between the energy consumption and the resulting video quality.

In particular the novel contribution of this monograph are:

1.	Adaptive Low-power Video Coding Application Architecture: At the appli-
cation level, the adaptivity and energy reduction are demonstrated using an
advanced video encoder (like H.264). An optimized application architecture is
proposed for video encoders targeting dynamically reconfigurable processors.
To reduce the energy requirements of different functional blocks of a low-power
video encoder at run time, different algorithms have been developed as listed
below:

a. � An analysis of spatial and temporal video properties with consideration of
important Human-Visual System properties to categorize different video
frames and their Macroblocks, such that different energy is spent on the
encoding of Macroblocks with different texture and motion properties.

1 Introduction

www.manaraa.com

11

b. � An adaptive complexity reduction scheme to reduce energy requirements of
encoder by excluding improbable coding modes from the mode-decision pro-
cess. It solves the issue of choosing the final coding mode out of hundreds of
possible combination (without exhaustively searching the design space) by
considering the spatial and temporal video properties. Unlike state-of-the-art,
this scheme performs an extensive mode-exclusion before fast Mode Deci-
sion and Motion Estimation processes, thus providing a significant reduction
in the computational complexity and energy consumption.

c. � An energy-aware Motion Estimation with integrated energy-budgeting
scheme in order to adaptively predict the energy quota for the Motion Estima-
tion (that may consume up to 65% of the total encoding energy). It employs
the novel concept of Energy-Quality Classes in order to realize the adap-
tive low-power video encoding. Each Energy-Quality Class corresponds to
a particular Motion Estimation configuration that requires a certain energy
while providing a certain video quality. It thereby enables a run-time tradeoff
between the energy consumption and the resulting video quality. The energy-
budgeting scheme chooses a certain Energy-Quality Class for different video
frames considering the available energy, video frame characteristics, and
user-defined coding constraints while keeping a good video quality.

d. � For the blocks that are fixed by the standard and adaptivity is not possible,
low-power hardware accelerators were designed.

2.	Novel Concept of Instruction Set Muting: At processor level, a new way
to save energy in dynamically reconfigurable processors is proposed in this
monograph that allows to shun the leakage energy at the abstraction level of
Custom Instructions. According to an execution context, the Custom Instruc-
tion set of a dynamically reconfigurable processor is selectively ‘muted’ at run
time. It thereby relates leakage energy reduction to the execution context of an
application, thus enabling a far higher potential for energy savings. The con-
cept employs various so-called ‘Custom Instruction muting modes’ each leading
to particular leakage energy savings. This enables a dynamic tradeoff between
‘leakage energy saving’ and ‘reconfiguration energy overhead’ considering the
application execution behavior under run-time varying performance and area
constraints (e.g., in a multi-tasking environment). Raising the abstraction level to
instruction set addresses the above-discussed issues of hardware-oriented shut-
down in dynamically reconfigurable processors where it cannot be determined
at compile time which parts of the instruction set will be reconfigured on which
part of the reconfigurable fabric. The key challenge is to determine which of the
muting modes are beneficial for which part of the Custom Instruction set in a
specific execution context.

3.	Adaptive Low-power Reconfigurable Processor Architecture: To exploit
the higher potential for energy savings due to the novel concept of Instruction
Set Muting with multiple muting modes and to provide a high adaptivity (as
demanded by multimedia applications with highly video data dependent process-
ing considering changing scenarios of performance and area constraints, avail-

1.4 Contribution of this Monograph

www.manaraa.com

12

able energy resources, etc.), a run-time energy-management system is required.
At the processor level, a run-time adaptive energy management scheme is
employed that performs the following steps.

a. � Determine an energy minimizing instruction set: First, an energy-minimizing
instruction set for a dynamically reconfigurable processor is determined (con-
sidering leakage, dynamic, and reconfiguration energy) under run-time vary-
ing performance and area constraints.

b. � Perform the selective instruction set muting: After choosing the energy-
minimizing instruction set, a decision about the Custom Instruction muting
mode is determined for the temporarily unused subset of the instruction set by
considering the requirements and execution lengths of the compute-intensive
parts of an application (i.e., the execution context of an application). It is
determined at run time which subset of Custom Instructions should be put
into which muting mode at which time by evaluating at run time the possible
associated energy benefit (a joint function of leakage, dynamic, and recon-
figuration energy).

For power estimation of dynamically reconfigurable processors, a comprehensive
power model is developed, which is based on power measurements. Moreover, this
monograph presents formal problem description and detailed evaluation of the pro-
posed algorithms at processor and application levels. The superiority of the pre-
sented contribution is demonstrated by a fair comparison with state-of-the-art. In
addition to the above-discussed scientific contribution, following has been devel-
oped in the scope of this work:

•	 A complete power-measurement setup for dynamically reconfigurable proces-
sors that consists of a power supply board, two oscilloscopes, an FPGA based
prototyping board, and a control program (running on a laptop/desktop com-
puter) for capturing the measurements from the oscilloscopes.

•	 A complete H.264 video encoder application with the proposed run-time algo-
rithms and low-complexity data flow. The in-house developed H.264 encoder is
currently executing on an in-house dynamically reconfigurable processor pro-
totype [Bau09], Texas Instruments’ multimedia processor, and laptops/desktop
computers.

•	 A video analysis tool with an easy-to-use graphical user interface for quick and
in-depth analysis of video sequences.

1.5  �Monograph Outline

The monograph is outlined as follows: Chap. 2 discusses the background for video
coding (especially the advanced video codec H.264) and prominent related work
on low-power encoder design and implementations. Afterwards, the background
for (dynamically) reconfigurable processors is presented. The RISPP (Rotating In-

1 Introduction

www.manaraa.com

13

struction Set Processing Platform) dynamically reconfigurable processor [Bau09] is
briefly described, which is used for detailed benchmarking of the novel contribution
of this monograph. The formal model of modular Custom Instructions of RISPP
is also discussed that will be used in the subsequent chapters for describing the
algorithms of the low-power processor architecture in a clear and precise manner.
Afterwards, state-of-the-art related work for different low-power techniques for re-
configurable computing is discussed.

Chapter 3 presents the requirement analysis of Video Coding for energy con-
sumption and adaptivity. A case study of an H.324 Video Conferencing application
is presented highlighting the video coding as the most compute-intensive task for
mobile multimedia applications. The coding tool set of advanced video codecs is
analyzed and common coding tools are explored. Different challenges and issues
related to power consumption and adaptivity are discussed in the light of the H.264
video encoder. Afterwards, the overview of the proposed adaptive low-power ap-
plication and processor architectures is presented along with different steps consid-
ered at design, compile, and run time. After discussing how the proposed concept
addresses the challenges, a power model for dynamically reconfigurable processors
is proposed in the scope of this monograph, which is used by the application and
processor level energy management schemes that are proposed in Chaps. 4 and 5.

Chapter 4 presents the first key novel contribution of this monograph in detail,
i.e., adaptive low-power video coding. First application architectural adaptations
for video encoders are discussed targeting reconfigurable processors followed by
the design of low-power Custom Instructions and hardware accelerators. After-
wards, an analysis of spatial and temporal video properties is presented that pro-
vides the foundation for adaptive complexity reduction and energy-aware Motion
Estimation which are the primitive components of an adaptive low-power video
encoder. The concept of adaptively excluding the less-probable coding modes is
introduced that significantly reduces the computational requirements of the video
encoder, thus saving the energy consumption. For the energy-aware Motion Estima-
tion, the concept of Energy-Quality Classes is introduced that provides a run-time
tradeoff between the energy consumption and the resulting video quality. A run-
time energy-budgeting scheme is presented that allocates an energy quota for the
Motion Estimation of different Macroblocks considering their spatial and temporal
video properties.

In Chap. 5 the novel concept of power-shutdown at the instruction set level
(i.e., the so-called Custom Instruction muting) is introduced. A power-shutdown
infrastructure is discussed that supports the Custom Instruction muting concept with
multiple muting modes. Based on this, an adaptive low-power reconfigurable pro-
cessor architecture is presented that employs a run-time adaptive energy manage-
ment with Selective Instruction Set Muting. It provides a dynamic tradeoff between
leakage, dynamic, and reconfiguration energy. Different components of this energy
management scheme (i.e., run-time selection of an energy-minimizing instruction
and Custom Instruction muting decisions) are discussed in the subsequent sections
along with their formal model, algorithms, and evaluation for different fabrication
technologies.

1.5 Monograph Outline

www.manaraa.com

14

The power measurement setup, test cases for power measurements, and steps for
creating the power model are explained in Chap. 6. Although the evaluation results
for different components are already discussed in Chaps. 4 and 5, Chap. 7 provides
the detailed comparison of the application and processor level energy management
with state-of-the-art. Chapter 8 concludes this monograph and provides an outlook
of the potential future works.

Appendix A briefly discusses the proposed multi-level rate control, which com-
pensates the quality degradations that occurred as a result of the above-mentioned
energy-aware adaptations. It provides smooth bit allocation which is critical for em-
bedded multimedia systems. Appendix B presents the overview of the simulation
environment. It further shows the in-house developed H.264 video encoder execut-
ing on an in-house dynamically reconfigurable processor prototype [Bau09] and
Texas Instruments’ multimedia processor. Appendix C shows the video analysis
tool which was used for the analysis of spatial and temporal properties in Chap. 4.

1 Introduction

www.manaraa.com

15

This monograph envisions adaptive low-power multimedia systems covering both
the application and processor perspectives. Besides low power consumption, a spe-
cial focus is on the support for adaptivity which is inevitable when considering the
rapid evolution of the multimedia/video standards and high unpredictability due
to user interactions, input data, and inclusion of adaptive algorithms in advanced
standards. In order to support adaptivity dynamically reconfigurable processors are
considered in this monograph. This chapter provides basics and terminology used
in video coding and an overview of the H.264 video encoder which is one of the
latest video coding standards. Afterwards, a general background of the reconfigu-
rable processors and their low-power infrastructure is discussed in Sect. 2.3 fol-
lowed by the prominent related work in dynamically reconfigurable processors and
low-power approaches for reconfigurable computing. Especially, the RISPP pro-
cessor [Bau09] is presented in detail as it is used for detailed benchmarking of the
processor-level contribution of this monograph (i.e., adaptive low-power processor
architecture).

2.1  �Video Coding: Basics and Terminology

Figure 2.1 provides an overview of the structure of a video sequence. A video is
composed of a sequence of frames of a scene captured at a certain frame rate (given
as fps, frames per second) creating a smooth motion perception to the human eye.
The basic unit of a video frame is a pixel (also called picture element or pel). The
size of a video frame is denoted as its resolution, which is given as the number of
pixels in one line (frame width, W) and number of lines (frame height, H). Different
video resolutions can be seen in Fig. 2.1. Typical resolutions for mobile videos are
CIF (Common Intermediate Format) and QCIF (Quarter CIF), while for entertain-
ment quality (like in TVs, multimedia TVs, home cinema, etc.), the resolutions vary
from SD (Standard-Definition) to HD (High-Definition).

Chapter 2
Background and Related Work

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3_2, © Springer Science+Business Media LLC 2011

www.manaraa.com

16

Typically cameras capture a video frame in RGB1 format which is then con-
verted into YUV2 (4:4:4) format for video encoding purpose. A video in YUV format
consists of one Luminance (Y, also called Luma) and two Chrominance (UV, also
called Chroma) components. YUV 4:4:4 denotes a full-sized Y, U, and V compo-
nents. Since the human eye is more sensitive to brightness compared to the color,
typically the Chroma components (U and V) are sub-sampled before encoding to
obtain a resolution of YUV 4:2:0 where the size of Y component is W × H and the
size of each of the U and V component is W/2 × H/2. Note, the sub-sampling of the
color components directly corresponds to a 50% reduction in the video data.

All the advanced video encoders are block-based encoders, i.e., the basic pro-
cessing unit for an encoder is a 16 × 16 Luma pixel block which is called a Mac-
roblock (MB). A group of MBs is called a Slice. A frame can be partitioned into
several variable-sized slices (see Fig. 2.1). In an extreme case, one complete frame
can also be a single slice. Depending upon the prediction direction, a slice/frame
can be categorized as:

•	 Intra-Predicted (I) Slice/Frame: all MBs of this slice/frame are encoded using
the spatial prediction, i.e., the prediction is performed using the reconstructed
pixels of the neighboring MBs in the current slice/frame.

•	 Inter-Predicted (P) Slice/Frame: the MBs may be encoded using the spatial
prediction or using the temporal prediction, i.e., the prediction is performed us-
ing the reconstructed pixels of the MBs in the previous slice/frame.

•	 Bi-Predicted (B) Slice/Frame: the MBs may be encoded using the spatial pre-
diction or the temporal prediction from the previous and/or future slices/frames.

Although P- and B-Frames provide a higher compression compared to the I-Frames,
the I-Frames are necessary in periodic intervals in order to provide random access to
the video sequence and to avoid the propagation of the prediction error. The group

1  RGB denotes Red, Green, Blue components of a video frame.
2  The reason for using YUV space for video coding is its smaller correlation between the color
components making the independent encoding of these components easier.

Fig. 2.1   An overview of the digital video structure (showing group of pictures, frame, slice, MB)
and different video resolutions

QCIF
(176x144)

CIF (352x288)

SD (720x480)

HD720 (1280x720)

HD1080 (1920x1080)

Different Video Resolutions

Group of Pictures (GOP)

Video Sequence

Slice 0

Slice 1

Slice 2

H

W

16 pixels

16
 p

ix
el

s

Video Frame

MB0 MB1MB2

Macroblock
(MB)

I B P B P B P B I

2 Background and Related Work

www.manaraa.com

17

of frames between two I-Frames is called Group of Pictures. Typically a Group
of Pictures defines the order of different frame types and the prediction structure.
Note: the nomenclature used here is based on the H.264 video coding standard.
However, most of the terminology is similar in the previous generations of the cod-
ing standards.

2.2  �The H.264 Advanced Video Codec: A Low-power
Perspective

The limited power resources of current/emerging mobile devices have led to the
evolution of power-/energy-aware multimedia. Their video encoders demand huge
amount of processing and energy from the underlying hardware, thus pose a chal-
lenge on low-cost/low-power embedded systems. In the following, before proceed-
ing the state-of-the-art related work on adaptive and low-power video coding archi-
tectures, an overview of the H.264 video encoder which is one of the latest video
coding standards.

2.2.1  �Overview of the H.264 Video Encoder and  
Its Functional Blocks

The advanced video coding standard H.264/AVC3 (Advanced Video Coding)
[ITU05] was developed by the Joint Video Team (JVT) of the ITU-T VCEG and
ISO/IEC MPEG to provide a bit rate reduction of 50% as compared to MPEG-
2 with similar subjective visual quality [WSBL03]. However, this improvement
comes at the cost of significantly increased computational complexity (∼ 10 ×  rela-
tive to MPEG-4 advance simple profile encoding, ∼ 2 ×  for decoding [OBL+04]),
that directly corresponds to high energy consumption. This increased computational
complexity and energy consumption of H.264 is mainly due to its complex predic-
tion, Motion Estimation and Rate Distortion Optimized Mode Decision processes
that operate on multiple (variable) block sizes (as shown in Fig. 2.3). It thereby
poses serious challenges on the low-power encoder realizations for embedded mul-
timedia systems.

Figure 2.2 presents the functional overview of the H.264/AVC video encoder. A
sequence of uncompressed video frames in YUV 4:2:0 format is given as the input.
Each frame is split into Macroblocks (MBs, i.e., blocks of 16 × 16 pixels). An MB
can be further divided into 16 × 8, 8 × 16, or 8 × 8 blocks (see Fig. 2.3). Each 8 × 8
block can be further divided into 8 × 4, 4 × 8, or 4 × 4 sub-blocks. Altogether, there

3  Also called MPEG-4 Part-10 (ISO/IEC 14496-10) or MPEG-4 Advanced Video Coding (AVC).

2.2 The H.264 Advanced Video Codec: A Low-power Perspective

www.manaraa.com

18

are seven different block types. The MBs of a frame are encoded in a raster scan
order using one of the following three MB Types:

•	 Intra-Predicted (I-MB): the MB is encoded using a spatial prediction in the
current frame.

•	 Inter-Predicted (P-MB): the MB is encoded using a temporal prediction from
the previous frame.

•	 Bi-Predicted (B-MB): the MB is encoded using a temporal prediction from the
previous & future frames.

The first frame of a Group of Pictures is called Intra-Frame where all of its MBs
are encoded as I-MB. Intra Prediction in H.264 has been enhanced with multiple di-

Fig. 2.2   Functional overview of the H.264/AVC video encoder

Motion
Estimation

Rate Distortion
Optimization Mode

Decision (RDO-MD)

Intra
Prediction

INTER (P-MB)

Transform
(DCT)

Quantization Entropy
Coding

IDCT
Inverse-

Quantization

+

–

+
+Deblocking Filter

QP

Motion
Compensation

Rate
Control

Prediction

ENCODING PATH

RECONSTRUCTION PATH

Reference Frames

(Partial Decoder)

Reconstructed
Frame

INTRA (I-MB)

Input Video Signal

Split into
Macroblocks

(16x16 pixels)

2 Background and Related Work

Fig. 2.3   Variable block sizes for inter-predicted MBs (P-MBs) in H.264/AVC

P 8 x 16 P 8 x 8

0

1

0

10

32

0 1

An Example

Scenario of

Possible Mode

Combinations in a

coded MB:

0
1

0
1

0

2 3

1

8 x 4

4 x 4
4 x 8

P 8 x 8 P 8 x 4 P 4 x 8 P 4 x 4

P 16 x 16 P 16 x 8

8 x 8

0

www.manaraa.com

19

rectional prediction modes which minimize the predictive error. For the Luminance
(Luma, Y) component of an MB, the prediction may be formed for each 4 × 4 sub-
block using nine prediction modes or for the complete MB (i.e., 16 × 16) with four
prediction modes. Two 8 × 8 Chrominance (Chroma, UV) components are predicted
by the same mode (out of 4). Therefore, the total number of Intra mode combina-
tions for a single MB is given as 4 * (9 * 16 + 4) that corresponds to 592 possible
mode calculations for only Intra Mode Decision.

Remaining frames of a Group of Pictures are called Inter-Frames where their
MBs can be encoded as I-MB or P-MB depending upon the decision of the Rate
Distortion Optimized Mode Decision (RDO-MD). For P-MBs, Motion Estima-
tion (ME) is performed for searching the current block in the reference frame (see
Fig. 2.2) in order to find out the best match (i.e., the block with minimum distor-
tion). The search is performed in a so-called (pre-defined) search window (a typical
size is 33 × 33 pixels). The ME process consists of two stages: Integer-pixel ME
(IME) and Fractional-pixel ME (FME). The IME uses Sum of Absolute Differences
(SAD, see Eq. 2.1) to calculate the block distortion for an MB in the current frame
(Ft) with respect to an MB in the reference frame (Ft  − 1) at integer pixel resolution.

� (2.1)

Once the best Integer-pixel Motion Vector (MV) is found, the FME stage refines the
search to fractional pixel accuracy using Sum of Absolute Transformed Differences
(SATD, Eq. 2.2) as the cost function to calculate the block distortion. It performs a
2-D Hadamard Transform (HT) on a 4 × 4 array of difference values. Compared to
SAD, SATD provides a better MV. However, because of high computational load,
SATD is only used in the FME stage.

� (2.2)

HT4 × 4 is the 2-D 4 × 4 Hadamard Transform on a matrix D (in case of SATD, it
is the differences between current and reference pixel values) and it is defined as:

�

(2.3)

Typically ME has to be performed for various block size combinations (altogether
20 different ME combinations per MB are evaluated in RDO-MD [GY05]). An
example scenario is presented in Fig. 2.3. As a result, the ME process may consume
up to 60% (1 reference frame) and > 80% (5 reference frames) of the total encod-
ing time [CZH02]. High computational load makes the ME module not only time

SAD =
15∑

y=0

15∑

x=0

|Current(x, y) − Reference(x, y)|

SATD =
4∑

y=0

4∑

x=0

|HT4×4{Current(x, y) − Reference(x, y)}|

HT4×4 =









1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1



 [D]





1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1







 /2

2.2 The H.264 Advanced Video Codec: A Low-power Perspective

www.manaraa.com

20

consuming but also energy/power demanding [YWV05]. Considering the variable-
sized blocks in I- and P-MBs, each MB can be predicted using one of the following
coding modes4.

�

(2.4)

The exhaustive RDO-MD in H.264 processes all possible P-MB and I-MB mode
combinations in all possible block sizes. Therefore, RDO-MD is the most critical
functional block in H.264, as it determines the number of ME iterations which is
the most time and energy consuming part. RDO-MD in H.264 employs a Lagrange-
based cost function that minimizes the Distortion ( D) for a given Rate ( R), as given
below:

� (2.5)

‘R’ is the number of bits required to code the ‘Mode’ and ‘D’ is computed using
SATD or SAD with respect to the current ‘c’ and the reference ‘r’ MBs.  is the
Quantization Parameter (QP)-based Lagrange Multiplier, such that:   = 0.85  *  2  *  
( QP  − 12)/3. The mode that provides the best prediction (i.e., minimizes the Eq. 2.5)
is chosen as the final coding mode (i.e., the best mode).

For the selected best mode, the prediction data is generated according to the
MB Type and the corresponding coding mode. This prediction data needs to be
compliant to the standard specifications as the decoder creates an identical predic-
tion for the decoding process. In case of the P-MB the prediction data is generated
using Motion Compensation. In case the Motion Vector points to a fractional-pixel
position, first, the samples at half-pixel positions (i.e., between the integer-position
samples) in the Luma component (Y) of the reference frame are generated using a
six-tap filter with weights [1/32, −5/32, 20/32, 20/32, −5/32, 1/32]. The samples at
quarter-pixel positions are generated by Bilinear Interpolation using two horizon-
tally and/or vertically adjacent half- or integer-pixel positions. This prediction data
is subtracted from the current block to calculate the residue. Each 4 × 4 sub-block of
the residue data is then transformed using a 4 × 4 integer-based 2-D Discrete Cosine
Transform (DCT, Eq. 2.6). Note, the 4 × 4 DCT in H.264 is an integer transform (all
operations can be carried out using integer arithmetic), therefore, it ensures zero
mismatches between the encoder and the decoder.

�

(2.6)

4  In this monograph, I8 × 8 is not considered as it is not used for the mobile devices. However, the
contribution of this monograph is scalable to I8 × 8.

ModeP−MB ∈ {SKIP, P 16 × 16, P 16 × 8, P 8 × 16, P 8 × 8,

P 8 × 4, P 4 × 8, P 4 × 4}
ModeI−MB ∈ {I16 × 16, I4 × 4}

J (c, r , Mode|QP) = D(c, r , Mode|QP) + λMode ∗ R(c, r , Mode|QP)

DCT 4×4 = CXCT =









1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1



[X]





1 2 1 1
1 1 −1 −2
1 −1 −1 2
1 −2 1 −1









2 Background and Related Work

www.manaraa.com

21

In case of an I-MB, the 16 DC components of an MB (one for each 4 × 4 block)
are further transformed using a 4 × 4 Hadamard Transform (see Eq. 2.3). In case of
Chroma components (U and V), the DC coefficients of each 4 × 4 block of Chroma
coefficients are grouped in a 2 × 2 block (WDC) and are further transformed using a
2 × 2 Hadamard Transform as shown in Eq. 2.7.

� (2.7)

Afterwards, the transformed coefficients are quantized according to a QP value de-
termined by a Rate Controller. The Rate Controller regulates the number of pro-
duced bits according to a given bit rate. Therefore it determines the QP value which
is used for quantization as well as an input to the RDO-MD and ME. The quan-
tized transformed coefficients are finally compressed using a lossless entropy coder.
H.264/AVC employs a Context Adaptive Variable Length Coding (CAVLC) or a
Context Adaptive Binary Arithmetic Coding (CABAC). In this monograph only
CAVLC is considered.

A video encoder contains a model of the decoding process in order to reconstruct
the encoded blocks for computing the prediction values for the subsequent blocks
and upcoming frames. Therefore, the inverse quantization is performed on the quan-
tized coefficients followed by an inverse transformation stage. The inverse DCT is
given by Eq. 2.8 and it is orthogonal to the forward transform, i.e., T −1( T( X))  = X.

�

(2.8)
The inverse Hadamard Transforms are identical to the forward Hadamard Trans-
forms (Eqs. 2.3, 2.7). After the inverse transformation, the prediction data is added
into the inverse transformed values to obtain the reconstructed block. After the com-
plete frame is encoded and reconstructed, H.264/AVC applies an in-loop Deblock-
ing Filter on the reconstructed data to reduce blocking distortion by smoothening
the block edges. The filtered frame serves as the reference frame, which is used for
the Motion Estimation and Compensation of the upcoming frames. Note, for the
Intra Prediction (i.e., in case of I-MBs), the prediction is formed using non-filtered
values. Further details on the H.264/AVC standard can be found in [Ric03, 10;
WSBL03].

It is worth mentioning that only the H.264/AVC decoder is fixed by the standard
in order to ensure the compliance of the bitstream and syntax. Therefore, the predic-
tion part, (inverse) transformation, and (inverse) quantization, entropy coding, and
the Deblocking Filter need to be standard compliant at the encoder side. However,
this leaves sufficient space for researchers and designers to incorporate their ideas
in the Motion Estimation, Rate Control, and Mode Decision processes to obtain an
efficient encoder application in terms of power and performance.

HT 2×2 =
([

1 1
1 −1

]
[WDC]

[
1 1
1 −1

])

IDCT4×4 =









1 1 1 1/2
1 1/2 −1 −1
1 −1/2 −1 1
1 −1 1 −1/2



[X]





1 1 1 1
1 1/2 −1/2 −1
1 −1 −1 1

1/2 −1 1 −1/2









2.2 The H.264 Advanced Video Codec: A Low-power Perspective

www.manaraa.com

22

Now state-of-the-art related work is presented for adaptive and low-power archi-
tectures and algorithms for the complete H.264/AVC video encoder and its different
functional blocks.

2.2.2  �Low-Power Architectures for H.264/AVC Video Encoder

Majority of H.264 encoding solutions target ASIC implementation with a focus on
either low power consumption of high resolution system. Few works have also tar-
geted DSP-/ASIP-based and reconfigurable solutions. In the following the promi-
nent related work is discussed for the complete H.264 encoder.

ASIC-Based Encoder Implementations:  A hardware design methodology for
H.264/AVC video coding system is described in [CLC06]. In this methodology,
five major functions are extracted and mapped onto a four stage Macroblock (MB)
pipelining structure. Reduction in the internal memory size and bandwidth is also
proposed using a hybrid task-pipelining scheme. However, some functional blocks
(e.g., Motion Compensation, DCT, and Quantization) are not considered for hard-
ware mapping. The approach in [CCH+06] implements an H.264 encoder with a
four-stage Macroblock (MB) level pipeline scheme, a memory hierarchy, and a
dual-buffer entropy encoder. The prototype—implemented using UMC 180 nm—
requires a relatively large footprint (922.8 KGates and 34.72 KB SRAM), thus
resulting in a high power consumption of 581 mW for D1 and 785 mW for HD720p.
This power consumption is infeasible for mobile applications according to [EY05].
The authors in [MSH+08] proposed a H.264 codec with high picture quality for
mobile applications. They employed a Dynamic Clock Supply Stop (DCSS) system
to reduce the power consumption. In order to solve the data dependencies between
the Intra Prediction and the reconstruction loop tasks, a prediction scheme is pre-
sented that uses the original image instead of the reconstructed one. However, this
approach inserts distortion to the final image. For Motion Estimation a SKIP algo-
rithm is supported with SATD as the matching criteria. The hardware implementa-
tion is able to encode HD720p running at 144 MHz consuming 64 mW with an
on-chip memory of 56 KB SRAM. In [CCT+09] a low-power H.264 encoder is pro-
posed for portable devices. However, this work mainly focuses on the Motion Esti-
mation and ignores other functional blocks of the encoder. The variable block size
Integer-pixel Motion Estimation is based on the Four Step search and the Fractional-
pixel Motion Estimation features the so-called One-Pass algorithm for three block
sizes. However, such Motion Estimation search algorithms have a high tendency
to trap in the local minima [CZH02; Tou02; YZLS05]. The proposed architecture
encodes real-time (30fps) D1 resolution at 54 MHz consuming 43.5–67.2 mW. It
uses 452.8 KGates and 16.95 KB SRAM in TSMC 180 nm technology. A partially
quality-adjustable H.264 encoder is presented in [CCW+09] to provide fixed power
vs. quality tradeoffs. A complete encoder hardware architecture is proposed with a
control logic employing four quality modes. The design is implemented with TSMC
130 nm requiring 470 KGates and 13.3 KB SRAM. Although the main claim of this

2 Background and Related Work

www.manaraa.com

23

work is the quality vs. power adaptivity, for higher resolutions it falls back to the
lowest quality mode which is complementary to the system requirements, i.e., high
resolution encoding typically requires high quality.

ASIP-/DSP-Based and Reconfigurable Encoder Implementations:  In [KLHS06]
an ASIP featuring Custom Instructions for Deblocking Filter and Intra Prediction
are presented. Hardware accelerators for Motion Estimation/Compensation and
entropy coding are also provided. A performance reduction of 20–25% is observed.
Moreover, a small search range [− 16, + 15] is used which provides limited rate-
distortion results for higher resolutions. The proposed implementation requires
76 KGates when synthesized using a Samsung SEC 180 nm technology. The authors
in [SJJL09; ZWFS07] proposed encoding solutions using the TMS320DM642
VLIW processor executing at 600 MHz. Based on their complexity analysis, a Dia-
mond search algorithm is deployed as the Motion Estimation search pattern, which
is insufficient to capture high motion. Therefore, it results in a significant quality
loss. Various DSP specific optimizations are programmed using the DM642 special-
ized instruction set for performance improvement. An energy efficient, instruction
cell based, dynamically reconfigurable fabric combined with ANSI-C programma-
bility, is presented in [MYN+06]. This architecture claims to combine the flexibility
and programmability of DSP with the performance of FPGA. In [LK06] the authors
have presented the XPP-S (Extreme Processing Platform-Samsung), an architec-
ture that is enhanced and customized to suit the needs of multimedia application.
It introduces a run-time reconfigurable architecture PACT-XPP that replaces the
concept of instruction sequencing by configuration sequencing [May04; XPP02].
In [BKD+05; MVM05; VSWM05] the authors have mapped an H.264 decoder
onto the ADRES coarse-grained reconfigurable array. In [BKD+05; VSWM05] the
authors have targeted IDCT and in [MVM05] Motion Compensation optimizations
are proposed using loop coalescing/merging, loop unrolling, etc. However, at the
encoder side the scenario is different from that in decoder, because the interpo-
lation for Luma component is performed on frame-level. Although the proposed
optimizations in [MVM05] expedite the overall interpolation process, this approach
does not avoid the excessive computations for those MBs that lie on integer-pixel
boundary. A hardware co-processor for real time H.264 video encoding is pre-
sented in [MMFS06]. It provides only Context Adaptive Binary Arithmetic Coding
(CABAC) and Motion Estimation in two different co-processors thus offers partial
performance improvement.

Summarizing:  the above-discussed encoding approaches primarily target ASIC-
based solutions that lack flexibility and are not amenable to the standard evolu-
tion trends. Moreover, the above-discussed related work lacks run-time adaptivity
when considering varying energy budgets and area/performance constraints. One of
the key distinctions of the proposed contribution (in this monograph) is to enable
the run-time configurability and tradeoff between the energy consumption and
achieved video quality for dynamically varying energy budgets and area/perfor-
mance constraints.

2.2 The H.264 Advanced Video Codec: A Low-power Perspective

www.manaraa.com

24

2.2.3  �Adaptive and Low-Power Design of the Key Functional
Blocks of the H.264 Video Encoder: State-of-the-Art  
and Their Limitations

A major research effort has been spent on designing individual blocks of the H.264
codec, e.g., Fast Mode Decision, Motion Estimation (ME), and Deblocking Filter.
The state-of-the-art related work for the key functional blocks of the H.264 encoder
is discussed in the following, highlighting the prominent work in adaptive and low-
power algorithms and architectures.

Fast Mode Decision and Complexity Reduction Schemes:  As discussed in
Sect. 2.2.1, the exhaustive RDO-MD in H.264 investigates all possible P-MB and
I-MB mode combinations in all possible block sizes to make a decision about the
actual coding mode. Therefore, the exhaustive RDO-MD process is extremely com-
pute-intensive and practically infeasible in real-world performance and/or power-
critical embedded multimedia systems. Note, Mode Decision for P-MB modes is
far more complex than that for I-MB modes due to the compute-intensive ME pro-
cess. This fact becomes critical when after the RDO-MD the final coding mode
comes out to be an I-MB mode, thus in this case the complete ME comes out to be
unnecessary. To address the limitations of the exhaustive RDO-MD, fast RDO-MD
schemes are employed. The basic idea of fast RDO-MD scheme is to select a set of
coding mode candidates (which is much smaller than the set of all modes) such that
the computational requirements of the RDO-MD process are significantly reduced
while keeping the visual quality close to that of the exhaustive RDO-MD. State-of-
the-art fast RDO-MD schemes can be categorized as fast P-MB MD [ADVLN05;
GY05; JC04; KC07; LWW+03; PC08; SN06; WSLL07; Yu04], fast SKIP5 MD
[JL03], fast I-MB MD [MAWL03; PLR+05], and the combination of the above
[ADVLN05; JL03]. These fast RDO-MD schemes either simplify the used cost
function or reduce the set of candidate modes iteratively depending upon the output
of the previous mode computation. The authors in [JC04] used Mean Absolute Dif-
ference of MB to reduce the number of candidate block types in ME. On average, it
processes five out of seven block types. The approach in [KC07] uses the RD cost
of neighboring MBs to predict the possible coding mode for the current MB. Simi-
lar approach is targeted by [PC08; WSLL07] that use the residue texture or residue
of current and previously reconstructed MB for fast P-MB Mode Decision. The
technique in [Yu04] uses the mode information from previous frame to predict the
modes of MBs in the current frame. The technique in [SN06] provides a fast SKIP
and P16 × 16 prediction as an early predicted mode option. In [GY05], smoothness
and SAD of the current MB are exploited to extend the SKIP prediction and exclu-
sion of smaller block mode types. Even if all conditions are satisfied, still 152 out of
168 modes are evaluated, else all modes are evaluated as the exhaustive RDO-MD.
The authors in [PLR+05] exploited the local edge information by creating an edge

5  For a SKIP Macroblock, encoder does not send any motion and coefficient data and a SKIP
Macroblock can be completely reconstructed at the decoder side.

2 Background and Related Work

www.manaraa.com

25

map and an edge histogram for fast I-MB Mode Decision. Using this information,
only a part of available I-MB modes are chosen for RDO, more precisely 4 instead
of 9 I4 × 4 and 2 out of the 4 I16 × 16 are processed. The fast I-MB Mode Decision
scheme in [MAWL03] uses partial computation of the cost function and selective
computation of highly probable modes. I4 × 4 blocks are down sampled and the pre-
dicted cost is compared to variable thresholds to choose the most probable mode. A
limited work has been done that jointly performs fast Mode Decision for both I-MB
and P-MB. In [AML07], a scalable mode search algorithm is developed where the
complexity is adapted jointly by parameters that determine the aggressiveness of an
early stop criteria, the number of re-ordered modes searched, and the accuracy of
ME steps for the P-MB modes. At the highest complexity point, all P-MB and I-MB
modes are processed with highest ME accuracy. The authors in [PYL06] proposed a
scalable fast RDO-MD for H.264 that uses the probability distribution of the coded
modes. It prioritizes the MB coding modes such that the highly probable modes are
tried first, followed by less probable ones.

Most of these state-of-the-art RDO-MD schemes deploy a similar philosophy as
they sequentially process mode by mode and exclude the modes depending upon
the output of previously evaluated modes, i.e., modes are not excluded in the fast
RDO-MD until some ME is done. Therefore, these approaches suffer from a limita-
tion that—in worst case—all possible coding modes are evaluated. In average case,
still significant (more than half of all) modes are computed or even in the best case
at least one mode from both P-MB and I-MB is processed (see [GY05; JC04]). In
any case, ME is always processed, thus the computational requirements of the state-
of-the-art are still far too high, which makes them infeasible for low-power embed-
ded multimedia systems. This monograph introduces an Adaptive Computational
Complexity Reduction Scheme (see Sect. 4.4, p. 95) that addresses these issues by
adaptively excluding as many coding modes as possible from the candidate mode
set at run time, even before starting the actual fast RDO-MD and ME processes. It
thereby provides a significant reduction in the computational complexity and en-
ergy consumption of the video encoder.

Once the coding mode is determined and the type is P-MB, the most energy
consuming part of an encoder is Motion Estimation. The energy distribution of the
encoding process will be discussed in Sect. 3.1 for an optimized video encoder
implementation.

Motion Estimation (ME):  The complexity and energy consumption of ME
is directly proportional to the number of computed SADs to determine the best
match (i.e., the MB with the minimum distortion). A Full Search ME (i.e., exhaus-
tively searching all possible candidate positions6 in the search window) provides
the optimal match but requires a huge amount of energy (up to 65–90% of total
encoding energy [YWV05]). As a result, it is not practicable for real-world applica-
tions. Many fast and adaptive ME schemes have been proposed to reduce the com-
putational complexity, such as, Unsymmetrical-cross Multi-Hexagon-grid Search

6  1089 candidate positions per MB for a search window size of 33 × 33.

2.2 The H.264 Advanced Video Codec: A Low-power Perspective

www.manaraa.com

26

(UMHexagonS) [CZH02], simple UMHexagonS [YZLS05], Enhanced Predictive
Zonal Search (EPZS) [Tou02], etc. However, these ME schemes do not consider
available energy/power resources and only stop the search process when the quality
constraint is met, thus they always compute a large number of SADs. The compu-
tation-aware ME schemes [KXVK06; THLW03; YCL05] stop the search process
once the allocated computations are exhausted. Such approaches incorporate a rate-
control like mechanism to determine the number of processed SADs and terminate
the search once the allocated number of SADs are processed irrespective of whether
a good match has been found or not. As a result, these approaches may suffer from
severe quality artifacts. Moreover, these approaches are still energy-unaware. The
works in [DGHJ05; RB05] provide various VLSI implementations to expedite the
process of H.264 ME. Most of these hardware implementations are either suited for
Full Search or UMHexagonS. An ASIP-based approach is considered in [MRS07]
but it uses only spatial predictors and does not consider temporal information of the
motion field. Moreover, it only uses cross and 3 × 3 square patterns that take longer
to find the optimal Motion Vector (MV) in case of heavy or angular motions. The
approach in [HP07] explores fixed and random sub-sampling patterns for compu-
tation reduction. The authors in [YWV05] presented power modeling for ME and
evaluate it for eight different MEs. Some of the works have targeted the low-power
issue in ME [SF04; SLIS07; WSK+07] but they focus on reducing the power either
by changing the SAD formula [KSK06] or by eliminating candidates using partial
distortion sorting [SLIS07]. Partial distortion sorting is itself an overhead and it
excludes only a set of candidates from Full Search, which still results in a much
larger number of candidates. The authors in [WSK+07] presented an ME scheme
based on algorithmic noise tolerance. It uses an estimator based on input sub-sam-
pling but this approach results in degradation especially in case of videos with small
objects. Moreover, it uses a three-step search, which traps in local minima, and for
modern Motion Estimators it is hard to track motion using sub-sampled input frame.
The authors in [CCLR07] introduced a technique to reduce power in video commu-
nication by reducing the frame rate but it only works in case of very low motions.
Moreover, it incurs a noticeable degradation in the quality of service. The technique
in [SF04] exploits input data variations (not the changing levels of available energy)
to dynamically configure the search-window size of Full Search but does not con-
sider the energy/power level variations. Moreover, it targets Full Search which is far
more energy consuming than state-of-the-art ME schemes.

State-of-the-art adaptive, fast, low-power, and scalable ME schemes either only
consider a fixed quality-constrained solution or offer scalability with fixed termina-
tion rules that may lead to severe quality artifacts. These approaches do not provide
run-time adaptivity when considering run-time varying energy budgets (i.e., wheth-
er there is sufficient energy budget to process the allocated number of SADs or not)
and input video sequence characteristics. Additionally, these approaches ignore the
user-defined constraints, e.g., required video quality level or encoding duration.
As a result, these approaches are less energy-/power-efficient. Varying video se-
quence characteristics (motion type, scene cuts, etc.) and changing status of avail-
able energy budgets (due to a changing battery level or changing allocated energy

2 Background and Related Work

www.manaraa.com

27

in a multi-tasking system) stimulate the need for a run-time adaptive energy-aware
Motion Estimation scheme while exhibiting minimal loss in video quality. Note, the
available energy budgets may change according to various application scenarios
on mobile devices. This monograph introduces an energy-aware Motion Estima-
tion with integrated adaptive energy-budgeting scheme (see Sect. 4.5, p. 104) that
determines ‘how much energy budget should be allocated to the Motion Estimation
of one video frame or even one Macroblock when considering run-time varying
scenarios’ while keeping a good video quality.

The proposed scheme is different from the above-discussed state-of-the-art as it
comprehensively explores the tradeoff related to the energy consumption and video
quality loss while considering the run-time varying scenarios. Unlike the above-
discussed approaches (like [CCLR07; KSK06; SF04; SLIS07; WSK+07]), the pro-
posed ME scheme moves in the energy-quality design space at run-time using the
novel concept of Energy-Quality Classes, each requiring a different energy con-
sumption and providing a different visual quality. These Energy-Quality Classes are
selected at run time depending upon the available energy and user-defined controls
(e.g., frame rate) to enable energy-aware adaptivity, that has not been targeted by
others before. Moreover, novel search patterns are deployed that captures the large
angular/irregular motions and further refines the motion search in close vicinity.

In-Loop Deblocking Filter:  As the Deblocking Filter algorithm is fixed by the
standard [ITU05], the key research focus in the Deblocking Filter is low-power,
area-efficient, or high-throughput hardware acceleration. The approach in [MC07]
uses a 2 × 4 × 4 internal buffer and 32 × 16 internal SRAM for buffering the filter-
ing operations with I/O bandwidth of 32-bits. All filtering options are calculated in
parallel while the filtering conditions are computed in a control unit. This approach
uses 1-D reconfigurable FIR filter (8 pixels in and 8 pixels out) but does not tar-
get the optimizations of actual filter Data Path. It requires 232 cycles to filter one
MB. The authors in [SCL06] introduced a five-stage pipelined filter using two local
memories. This approach suffers from the overhead of multiplexers to avoid pipe-
line hazards. It costs 20.9 K gate equivalents for 180 nm technology and requires
214–246 cycles/MB. A fast Deblocking Filter is presented in [PH06] that uses a
Data Path, a control unit, an address generator, one 384 × 8 register file, two dual
port internal SRAMs to store partially filtered pixels, and two buffers (input and
output filtered pixels). The filter Data Path is implemented as a two-stage pipe-
line. The first pipeline stage includes one 12-bit adder and two shifters to perform
numerical calculations like multiplication and addition. The second pipeline stage
includes one 12-bit comparator, several two’s complementers and multiplexers
to determine conditional branch results. In worst case, this technique takes 6144
clock cycles to filter one MB. A pipelined architecture for the Deblocking Filter
is illustrated in [CC07] that incorporates a modified processing order for filter-
ing and simultaneously processes horizontal and vertical filtering. The performance
improvement majorly comes from the reordering pattern. For 180 nm synthesis this
approach costs 20.84 K gate equivalents and requires 192 (memory) + 160 (pro-
cessing) cycles. The authors in [AKL+07] mapped the H.264 Deblocking Filter on

2.2 The H.264 Advanced Video Codec: A Low-power Perspective

www.manaraa.com

28

the ADRES coarse-grained reconfigurable array [BKD+05; VSWM05]. It achieves
1.15× and 3× speedup for overall filtering and kernel processing, respectively.

The Deblocking Filter (Sect. 4.2.1) approach proposed in this monograph is dif-
ferent from the above approaches because it targets first the optimization of core
filtering Data Paths in order to reduce the total number of primitive operations
in one filtering. In addition to this, all conditions in one Data Path are collapsed
and two generic conditions are calculated that decide the filtering output. A paral-
lel scheme for filtering one 4-pixel edge is incorporated. A latest technique in the
Deblocking Filter inspired from the proposed approach is presented in [NWKS09].
Similar to the proposed approach, the technique of [NWKS09] also performs op-
eration reduction for the area reduction and high throughput. It additionally gates
the clock of the unused processing units to reduce the dynamic power. Since this
technique is synthesized using a 180 nm technology, the leakage power factor is
not considered.

2.3  �Reconfigurable Processors

In order to enable run-time adaptivity at the processor level, dynamically recon-
figurable processors are deployed as the target platform in this monograph. These
processors embed a reconfigurable fabric within a core pipeline (MIPS, SPARC,
VLIW, etc.). Depending upon its reconfiguration granularity, a fabric can be catego-
rized into coarse- and fine-grained reconfigurable fabric. A coarse-grained recon-
figurable fabric consists of an array of word-level reconfigurable Arithmetic Logic
Units (ALUs). It is amenable to data-flow dominant application kernels with word-
level processing (typically 16 or 32 bit). A fine-grained reconfigurable fabric em-
ploys Look-Up Tables (LUTs) with bit-level reconfigurability. A typical example of
such fabric is Field Programmable Gate Arrays (FPGAs). Fine-grained reconfigu-
rable fabrics are amenable to highly-parallel processing of byte-level operations (as
typically required in image and video processing), state machines (sub-byte level),
and bit-level operations (e.g., bit-shuffling, packing and merging operations, condi-
tion computations, etc.). A detailed discussion on these approaches can be found in
[VS07]. Detailed surveys and overview of different approaches in reconfigurable
computing are provided in [Ama06; BL00; Bob07; CH02; Har01; HM09; TCW+05;
VS07].

In the scope of this monograph, the focus is placed on dynamically reconfigu-
rable processors with a fine-grained reconfigurable fabric. These processors pro-
vide a high adaptivity and flexibility (due to their hardware reconfigurability and
programmability) combined with the performance and efficiency of dedicated hard-
ware accelerators (by exploiting a high degree of parallelism using an embedded
FPGA). Now the basic structure of a fine-grained reconfigurable fabric will be ex-
plained.

2 Background and Related Work

www.manaraa.com

29

2.3.1  �Fine-Grained Reconfigurable Fabric

Figure 2.4 illustrates the internal structure of a fine-grained reconfigurable fabric
that consists of Configurable Logic Blocks (CLBs) and Programmable Switching
Matrices (PSMs) connected with dedicated wires [Te06; Xil08a]. The internal de-
tails are shown for a Xilinx Spartan FPGA. A CLB-PSM pair is typically referred as

2.3 Reconfigurable Processors

Fig. 2.4   A typical composition of a fine-grained reconfigurable fabric with a 2D-Array of CLBs
and PSMs along with the internal details of a Spartan-3 Tile

Configurable Logic
Block (CLB)

L
o

g
ic

 S
lic

e

Configuration Memory Cells

Routing
Multiplexers

Interconnect
Switch Matrix

PSM: Programmable Switch Matrix, CLB: Configurable Logic Block

4L
U

T

4L
U

T

4L
U

T

4L
U

T

8 Singles

8 Singles

2 Doubles

3 Longs

2 Doubles

PSM PSM

2 Doubles2 Doubles

3 Longs

3 Longs3 Longs

PSM

PSM PSM PSM

CLB CLB

www.manaraa.com

30

a Tile. The CLBs consist of Look-Up Tables (LUTs) and flip flops, while the PSMs
constitute configurable interconnects and routing multiplexers7. Such a fine-grained
reconfigurable fabric is efficient in implementing bit-/byte-level operations, control
logic (finite state machines), and small memories. The fabric can be reconfigured at
run time to implement different hardware accelerators. A case where only a region
of the fabric is reconfigured at run time is referred as partial run-time reconfigura-
tion8. In this case, the regions that are not reconfigured remain active and functional.
Typically a reconfiguration is performed via an on-chip mechanism for accessing
the configuration memory. In case of Xilinx Virtex FPGAs, it is the Internal Con-
figuration Access Port (ICAP [Xil09]). The reconfiguration latency depends upon
the size of the configuration data and the reconfiguration bandwidth (for a recon-
figuration bandwidth of 36 MB/s and a 40 KB configuration data, i.e., Data Path
bitstream, the reconfiguration latency corresponds to 54,254 cycles at 50 MHz).

2.3.2  �Leakage Power of Fine-grained Reconfigurable Fabric  
and the Power-Shutdown Infrastructure

Recently, low-power design, especially the leakage power reduction, has become a
key research focus in reconfigurable computing. An overview of low-power tech-
niques for FPGAs is presented in [LL08]. A detailed analysis of leakage power of
the fine-grained reconfigurable fabric in Xilinx FPGAs is performed in [TL03],
highlighting the significance of leakage reduction in FPGAs especially when con-
sidering mobile devices. An analysis of dynamic power consumption in Virtex-II
FPGAs is presented in [SKB02]. An FPGA architecture evaluation framework for
power efficiency analysis is presented in [LCHC03] predicting leakage to be domi-
nant for future technologies.

Lately, power-gating (i.e., hardware-oriented power-shutdown) has been intro-
duced in FPGAs to reduce the leakage power by switching-off the power supply
to the reconfigurable regions with the help of high-Vt mid-oxide sleep transistor
[Ge04; Te06]. Besides an area overhead, sleep transistors typically introduce a per-
formance penalty due to their on-resistance in case the circuit is active and operat-
ing. Therefore, the granularity of the power-shutdown (i.e., the smallest hardware
block that can be independently shutdown) is one of the main design decisions. In
the following, different power-shutdown infrastructures are discussed for the fine-
grained reconfigurable fabric.

The hardware-oriented power-shutdown scheme of [CHC03] uses three sleep
transistors for CLBs and one for routing resources in order to obtain a fine-grained
leakage control. It employs a power-shutdown of each independent LUT, flip flop,
and routing switch. Such an approach provides a relatively higher power saving at

7  Further details on the Xilinx internal structure and its usage can be found in [Xil07].
8  Most of the architectures use the Xilinx FPGAs and tools [LBM+06] to prototype partial run-
time reconfiguration.

2 Background and Related Work

www.manaraa.com

31

the cost of significantly increased area overhead. The approach of [Ge04] targets
power-shutdown of clusters of several tiles (see Fig. 2.5a, [Ge04]) that may be
controlled by a single sleep transistor in order to provide leakage power reduction
while keeping the area overhead low [PSB05; Te06]. However, in this case the
number of powered-off tiles is reduced, as some clusters are ‘partially used’, i.e.,
they contain tiles that are used (thus need to remain active) and other tiles unused
(thus could be powered-off). Therefore, when considering a cluster-level power-
shutdown, such ‘partially used’ clusters cannot be shutdown and a relatively lower
power savings are obtained. To address this issue, the approach of [Ge04] proposes
a region-constrained placement to increase the number of clusters that be shutdown.

Xilinx research labs introduced the Pika low-power FPGA (90 nm) for battery-
powered applications that supports voltage scaling, hardware power-shutdown, and
a low-leakage Configuration SRAM [Te06]. The power-shutdown infrastructure of
Pika provides a compromise between [CHC03] and [Ge04] by providing sleep tran-
sistors at the level of individual tiles (see Fig. 2.5b) [Te06]. The authors showed that
(on average) 25% tiles are idle when evaluated for over 100 benchmarks. NMOS
sleep transistors are considered in Pika as they provide better speed characteris-
tics compared to the PMOS sleep transistors. Unlike using the thin-oxide high-Vt
transistors for power-shutdown [MSM+96] that incurs high leakage at 90 nm (and
below) technology nodes, Pika employs mid-oxide sleep transistors. A design space
exploration is performed in [Te06] to select a transistor size by exploring the power
and delay behavior of various transistor designs. Mid-oxide sleep transistor has
been selected for the Pika FPGA as it provides a leakage reduction by over 1000×
at the cost of 10% performance degradation. Pika incurs an 8% area increase due
to their power-shutdown infrastructure [Te06]. Kindly note that Xilinx has not yet
introduced such an infrastructure in their commercial products, however, it is envis-
aged to be in their future product lines.

Note, the above-presented approaches [CHC03; Ge04; Te06] only shutdown the
logic area (i.e., CLBs and PSMs) while keeping the Configuration SRAM pow-
ered-on to retain the configuration state. These approaches consider a low-leakage
SRAM with high-Vt transistors. The authors in [LLH07] showed that high-Vt tran-
sistors for leakage reduction in the Configuration SRAM result in increased SRAM

Fig. 2.5   State-of-the-art in power-shutdown infrastructure

a

L
o

ca
l F

ee
d

b
ac

k

Interconnect
Switch
Matrix

Logic
Slice

Logic
Slice

Logic
Slice

Logic
Slice

Cin

Cout

Switch
Power Supply RailControl Bit

Configurable Logic Block (CLB) b

Configuration
SRAM

Configurable
Logic Block (CLB)

Configuration
SRAM

Interconnect
Switch Matrix

Configuration
SRAM

Sleep Transistor

2.3 Reconfigurable Processors

www.manaraa.com

32

write time (i.e., increased reconfiguration time), that leads to a higher reconfigura-
tion energy. The authors in [MM05] proposed fine-grained leakage optimization
by shutting down the Configuration SRAM of unused LUTs. A hardware-oriented
power-shutdown technique with four sleep modes (achieved by applying differ-
ent bias to the footer device) is proposed in [Ae06] to provide a tradeoff between
wakeup overhead and leakage savings.

In order to activate the circuit, sleep transistors (requiring wakeup time and
wakeup energy) are switched-on. The Xilinx Pika project demonstrated a study of
wakeup characteristics for the mid-oxide sleep transistors where the wakeup time is
given as approximately 100 ns. A comparison of energy consumption is performed
for active and standby modes. This study demonstrates that a circuit is beneficial
to shutdown if the minimum sleep period is less than 2 µs in order to amortize the
wakeup energy.

2.3.3  �Custom Instructions (CIs): A Reconfigurable Processor
Perspective

A Custom Instruction (CI) is an assembly instruction that implements the function-
ality of a compute-intensive kernel of an application for its accelerated execution.
As discussed earlier, reconfigurable processors deploy so-called CIs (composed of
hardware accelerators, see Sect. 2.3.5) in order to expedite application’s compu-
tational hot spots9. Typically, a tool flow is used for designing hardware accelera-
tors and CIs for fine-grained reconfigurable processors, which is similar to that for
ASIPs/extensible processors. Therefore, the related work for automatic detection
and high-level synthesis of CIs and hardware accelerators from extensible proces-
sors can be used for creating reconfigurable CIs, too. For example, in case of H.264
video encoder, CIs can be designed to accelerate the Discrete Cosine Transform,
Sum of Absolute Difference (SAD) for Motion Estimation, In-Loop Deblocking Fil-
ter, etc.

Reconfigurable processors partition their reconfigurable fabric into so-called
Reconfigurable Functional Units (RFUs, connected to the core processor pipeline)
that are reconfigured at run time to (re-)load CI implementations for a hot spot.
After the execution of a hot spot is completed, the reconfigurable fabric may be
allocated to the CIs of other hot spots, thus demanding a dynamic reconfiguration
of the RFUs, which may consume a noticeable amount of energy due to the recon-
figuration process. Therefore, unlike extensible processors that statically provide
all CIs, reconfigurable processors use the fine-grained reconfigurable fabric in a
time-multiplexed manner to dynamically implement CIs of different hot spots of an
application or even CIs of different applications from diverse domains. To be able
to reconfigure any CI into any RFU, the interface between the core pipeline and

9  Throughout this paper, a hot spot denotes a computational hot spot that contains compute-inten-
sive application parts (i.e., kernels).

2 Background and Related Work

www.manaraa.com

33

all RFUs is identical. So-called prefetching instructions are inserted to trigger the
upcoming reconfigurations [LH02]. Further details on reconfigurable CIs and the
differences between CIs for reconfigurable and extensible processors can be found
in [Bau09].

In the following, prominent state-of-the-art reconfigurable processors are dis-
cussed (in chronological order) that can benefit from the novel contribution of this
monograph.

2.3.4  �Reconfigurable Instruction Set Processors

The OneChip and OneChip98 projects [WC96; CC01; JC99] couple RFUs with
the core processor pipeline for implementing multi-cycle CIs. RFUs may access the
main memory, while the core processor pipeline continues executing, in order to
expedite streaming applications [CC01]. However, it may result in memory incon-
sistencies. The OneChip98 project proposed a hardware support to automatically
resolve nine different types of memory inconsistencies. The RFUs provide six con-
figuration contexts which are loaded using the direct memory access.

The CoMPARE processor [SGS98] couples the pipeline with an RFU having
four inputs and two outputs. The RFU cannot implement a state-machine or data-
feedback logic as it does not provide registers or latches. Only one CI can be recon-
figured in the RFU. Therefore, if more than one CIs are executing within a compu-
tational hot spot, reconfiguration are performed during their execution.

The Proteus processor [Dal99, 03] couples the core processor pipeline with a
fine-grained reconfigurable fabric divided into multiple RFUs each containing one
CI at a time. The main research focus of Proteus is on the Operating System support
considering task switching and the opcode management for CIs in a multi-tasking
environment. Shared CIs among different tasks are assigned the same opcode. In
case of tasks with disparate processing behavior and insufficient number of avail-
able RFUs, some CIs execute in software thus resulting in a steep performance
degradation.

The Molen processor [PBV06, 07; VWG+04] couples a core processor pipeline
with a fine-grained reconfigurable fabric via a dual-port register file and an arbiter
for shared memory. These dedicated exchange registers are used to provide param-
eters to the CIs. Additional control instructions are provided to manage the recon-
figuration requests and CI executions. The decision of run-time reconfiguration is
determined at compile time using these control instructions. A generic instruction is
used to execute all CIs. The address of the configuration bitstream for the demanded
CI is provided to this generic instruction.

Bauer [Bau09] identified three different problems for state-of-the-art reconfigu-
rable processors (e.g., Proteus [Dal99, 03] and Molen [PBV06, 07; VWG+04]).

1.	Data Path Sharing Problem: The above-mentioned reconfigurable processors
employ monolithic CIs, i.e., a CI is implemented as a dedicated hardware block
using the reconfigurable fabric. These CIs may be either entirely loaded onto the

2.3 Reconfigurable Processors

www.manaraa.com

34

reconfigurable fabric or not at all. As a result, sharing of common Data Paths is
not possible in these reconfigurable processors. The concept of monolithic CIs
has two additional drawbacks as given below.

2.	RFU Fragmentation Problem: In order to dynamically reconfigure CI imple-
mentations into any RFU, all RFUs need to be of equally-sized and share a com-
mon connection interface. If an CI implementation is smaller than the RFU, the
remaining resources within the RFU cannot be used to implement another CI.
Therefore, it leads to a noticeable fragmentation which potentially results in
increased area requirements.

3.	Longer Reconfiguration Time Problem: Although monolithic CIs provide
higher performance (due to more parallelism), they result in significantly lon-
ger reconfiguration time due to more hardware. Depending upon the expected
number of CI executions and the reconfiguration frequency, the reconfiguration
overhead may degrade the potential performance improvement. Reconfigurable
processor typically address this problem by: (a) prefetching CI implementations
to start the corresponding reconfigurations as early as possible [LH02], and/or
(b) using core Instruction Set Architecture (cISA) to execute a CI when it is not
available in the RFUs.

Bauer [Bau09] proposed the Rotating Instruction Set Processing Platform
(RISPP) that—instead of monolithic CIs—employs modular CIs based on a hier-
archical composition. These modular CIs are composed of elementary Data Paths
(as hardware accelerators) and support multiple Implementation Versions per CI. It
addresses the above-discussed three problems of sharing, fragmentation, and longer
reconfiguration time. The concept of modular CIs enables an efficient utilization
of the reconfigurable fabric. It provides the potential for a higher adaptivity and
efficiency than monolithic CIs. RISPP incorporates a run-time system and a hard-
ware infrastructure (for computation and communication) to utilize the potential
of modular CIs in order to increase the efficiency and performance.

Note that monolithic CIs are actually a special case of modular CIs, i.e., they
provide exactly one implementation per CI which is implemented using one large
Data Path. Therefore, in subsequent chapters, RISPP is used to motivate and apply
adaptive low-power processor and application architectures and run-time energy-
management. RISPP is a more sophisticated and advanced reconfigurable processor
compared to previous state-of-the-art (like Molen and Proteus). However, for the
evaluation, dynamically reconfigurable processors with both modular and mono-
lithic CIs are used, i.e., RISPP and Molen.

Before discussing the concepts and techniques for low-power approaches in re-
configurable computing, in the following, an overview of RISPP is provided to a
level of detail necessary to understand the novel contribution of this monograph (for
further details please refer to Bauer [Bau09]). The details for other reconfigurable
processors can be found in [Ama06; BL00; Bob07; CH02; Har01; HM09; TCW+05;
VS07].

2 Background and Related Work

www.manaraa.com

35

2.3.5  �Rotating Instruction Set Processing Platform (RISPP)

The RISPP architecture [Bau09] embeds a fine-grained partially and dynamically
reconfigurable fabric with a five-stage pipeline RISC processor (e.g., MIPS [ASI]
or Sparc-V8 [Aer]) as shown in Fig. 2.6 [BSTH07]. The reconfigurable fabric is
connected to the Execution stage as a functional unit. A hardware infrastructure is
realized for the computation and communication within the reconfigurable fabric
(details are explained later in this section). The communication part is a set of mul-
tiple segmented busses as a fixed interconnect structure (i.e., non-reconfigurable).
The computation part consists of partially reconfigurable regions, i.e., so-called
Data Path Containers (DPCs). These DPCs can be dynamically reconfigured to con-
tain any particular Data Path on individual basis.

The principle distinction of RISPP compared to other reconfigurable processors
is the concept of modular Custom Instructions (CIs) composed of elementary Data
Paths and a run-time system to support them. These Data Paths can be reconfigured
independently and can be shared among different CIs. This enables different imple-
mentations options per CI (from pure software, i.e., using cISA, to various hardware
implementations), thus providing different tradeoffs between the reconfigurable
fabric area and the achieved performance. The RISPP run-time system performs
online monitoring of the CI executions, dynamically selects one implementation for
each CI of the currently executing computational hot spot, and schedules the Data
Path reconfigurations. In order to avoid potential memory inconsistencies and to
simplify the memory arbiter implementation, RISPP stalls the pipeline during the
execution of a CI.

2.3 Reconfigurable Processors

Fig. 2.6   Extending a standard processor pipeline towards RISPP and the overview of the RISPP
run-time system

www.manaraa.com

36

2.3.5.1  �Modular Custom Instructions (CIs) with Hierarchical Composition

Figure 2.7 presents an overview of the hierarchical composition of modular CIs,
consisting of the following three levels [BSKH07; BSTH07]:

Data Path:  A Data Path corresponds to an elementary hardware accelerator mod-
ule that can be (re-)loaded onto the reconfigurable fabric at run time. These Data
Paths exploit a high level of operator parallelism and operator chaining. Data Paths
of different types exhibit different computational properties, thus different latency
and power consumption. A Data Path instance corresponds to an instantiation of a
Data Path type. A reconfigurable fabric is typically partitioned (typically rectangu-
lar in shape) into so-called Data Path Containers (DPCs) that can be dynamically
reconfigure to contain any particular Data Path. A DPC is similar to RFUs but typi-
cally smaller in size. Note, multiple instances of a certain Data Path type can be
available at the same time, i.e., loaded into different DPCs.

Implementation Version:  An Implementation Version of a CI is typically com-
posed of multiple instances of different Data Paths types. The CI Implementation
Versions differ in the amount of reconfigurable hardware they need to allocate and
their resulting execution time. Therefore, these Implementation Versions provide
different tradeoff points between performance and reconfiguration overhead. An
Implementation Version is available if all of its demanded Data Paths are completely
loaded onto the reconfigurable fabric. A particular Data Path can be shared among
different Implementation Versions of different CIs (as shown in Fig. 2.7) because at
most one CI executes at a time. The Implementation Versions of a CI feature differ-
ent energy (leakage, dynamic, and reconfiguration) characteristics (as it will be dis-
cussed in Chap. 4 supported by actual measurements in Chap. 6). For each CI there
exists exactly one Implementation Version (the slowest one) that executes by using
only the cISA, i.e., without any accelerating Data Paths (see Fig. 2.7). It is activated
by a synchronous exception (trap) that is automatically triggered if the CI shall
execute and if the required Data Paths are not yet ready to execute (e.g., because

Fig. 2.7   Hierarchical composition of custom instructions: multiple implementation versions exist
per custom instruction and demand data paths for realization

CI A CI B CI C

A1 A2 A3 AcISA

1
2

2

B1 B2 BcISA C1 CcISA

1
2

C2

CUSTOM
INSTRUCTIONS
(CIs)

IMPLEMENATION
VERSIONS

DATA PATHS

2

1
1 1

1

2

Data
Path 2

Data
Path 1

Data
Path 4

Data
Path 3

Data
Path 6

Data
Path 5

1
2

1
22

11
2

(the numbers
denote: #Data
Path-instances
required for this
Implementation
Version)

1

(a CI can be
implemented
by any of its
Implementation
Versions)

an implementation
without hardware

acceleration

2 Background and Related Work

www.manaraa.com

37

of reconfiguration delay). Depending upon the available hardware resources, a CI
may execute using cISA or on the reconfigurable fabric (depending upon what is
more efficient and which Data Paths are loaded at a certain point in time during the
application execution).

Custom Instruction:  A Custom Instruction (CI) is an assembler instruction that is
executed to expedite a computational hot spot, thus the application execution. After
a hot spot has completed its execution, the DPCs may be allocated to the CIs of
other hot spots, which requires a run-time reconfiguration of the DPCs to load new
Data Paths. The functionality of a CI is typically composed of several Data Paths
that are loaded into the DPCs. A modular CI (as in the case of RISPP) has multiple
Implementation Versions. As soon as a Data Path is completed loading onto a DPC,
it may be used to execute a faster Implementation Version. This enables the gradual
upgrading and downgrading of CIs during run time by switching between different
Implementation Versions. On the contrary, a monolithic CI (as in the case of Molen)
has only one Implementation Version (i.e., a specialized case of modular CIs) and it
may be either entirely loaded onto the reconfigurable fabric or not at all.

The concept of modular CIs diminishes the above-discussed three problems of
sharing, fragmentation, and longer reconfiguration time. The sharing problem is
alleviated by Data Path sharing among different Implementation Versions of the
same and/or different CIs. The fragmentation is reduced by using small-sized Data
Paths instead of relatively large-sized monolithic CIs. The maximum fragmenta-
tion is limited by the size of a DPC, which is typically small. The problem of lon-
ger reconfiguration delay is alleviated by gradual upgrading, i.e., as soon as one
Data Path finished reconfiguration, a faster Implementation Version might become
available to accelerate the CI execution. Additionally, the concept of modular CIs
provides enhanced performance and adaptivity by exploiting the tradeoff between
performance and reconfiguration overhead at run time depending upon the appli-
cation execution context. In order to enable this, a run time system and hardware
infrastructure is employed in RISPP which will be explained after the formal model
of modular CIs.

2.3.5.2  �Formal Model of the Modular Custom Instructions

The formal model of the hierarchical CI composition is summarized here in order to
clearly formulate the pseudo-codes in Chap. 4.

A data structure (Nn, ∪, ∩) is defined such that Nn is the set of all Implementa-
tion Versions and n is the number of different Data Path types. A CI is represented
as a set of Implementation Versions. Let �m, �o, �p ∈ Nn be Implementation Versions
with �m = (m0, . . . , mn−1) where mi denotes the amount of required instances of
Data Path type Ai to implement the Implementation Version (similarly for �o and
�p). The total number of Data Paths required to implement an Implementation Ver-

sion �m is given as its determinant, i.e., | | : Nn → N;| �m| :=
∑n−1

i=0 mi.

2.3 Reconfigurable Processors

www.manaraa.com

38

The cISA Implementation Version of a CI is represented as | �m| := 0. The op-
erators ∪ and ∩ are used to combine two Implementation Versions (typically of
different CIs). The operator ∪ (see Eq. 2.9) provides the Implementation Version
that contains the Data Paths required to implement both Implementation Versions of
its input. The operator ∩ (see Eq. 2.10) provides the Implementation Version10 with
shared Data Paths between the both Implementation Versions of its input.

� (2.9)

� (2.10)

To express the Data Paths that are additionally required to realize an Implementa-
tion Version �p when the Data Paths of an Implementation Version �o are already
available, the upgrade operator � is used (Eq. 2.11).

� (2.11)

The comparison relation between two Implementation Versions is defined as �o ≤ �p
(see Eq. 2.12). As the relation is reflexive, anti-symmetric, and transitive, (Nn, ≤) is
a partially ordered set.

� (2.12)

In addition to the formal model for modular CIs, additional functions are defined
for the ease of description of pseudo-codes in Chap. 4. The syntax of these functions
is oriented at the object oriented programming style, such that an Implementation
Version is seen as an object and the function is called for that particular object.
Table 2.1 provides an overview of all these functions with the corresponding high-
level properties with their syntax and an explanation [Bau09]. Additionally, a list
dpc = (dpc1, ..., dpcn) is defined where n is the total number of DPCs in this list
and dpck.getLoadedDP () returns the loaded Data Path in the kth DPC. Note this
dpc list is a software data structure and it is not related to the hardware DPCs. It is
defined to facilitate the management of different Data Paths and hardware DPCs
along with their power states. The functions dpc.add(dpck) and dpc.remove(dpck)
are used to add and remove the kth DPC to the dpc list. dpc.find(i).location() finds
the (first) DPC location corresponding to the ith Data Path.

2.3.5.3  �Run-Time System of RISPP

The run-time system (see Fig. 2.6) exploits the potential of modular CIs and con-
trols the hardware infrastructure to determine the set of Implementation Versions
and the corresponding reconfiguration decisions as well as to control the CI execu-

10  Not necessarily of a particular Custom Instruction, it is rather a representation of the set of Data
Paths of two Implementation Versions.

∪ : Nn × Nn → Nn; �o ∪ �p := �m; mi := max{oi ,pi}

∩ : Nn × Nn → Nn; �o ∩ �p := �m; mi := min{oi ,pi}

�:Nn × Nn → Nn; �o � �p := �m; mi :=
{
pi − oi , if pi − oi ≥ 0

0, else

�o ≤ �p :=
{
true, if ∀i ∈ [1, n] : oi ≤ pi

false, else

2 Background and Related Work

www.manaraa.com

39

tions. The goal of algorithms for the run-time system are to maximize the perfor-
mance for a given area of the reconfigurable fabric. The area of the reconfigurable
fabric (i.e., number of DPCs), the core pipeline, CI formats and free opcode space,
and the implementation of the run-time system are fixed at design-time. The com-
position of Implementation Versions11, cISA implementations, insertion of forecast
instructions, and opcodes for CIs are determined at compile-time.

At compile time, the so-called Forecast Instructions (FI) are inserted in the ap-
plication binary12 to trigger the run-time system. These FI contains the information
about the CIs that are expected to be executed next, thus triggering the prefetching.
However, eventually the run-time system determines the reconfiguration decisions
for a set of Implementation Versions for the CIs as mentioned in the FIs. An offline-
profiling is used to predict the execution frequency of a CI, i.e., the so-called Fore-
cast Value (FV) of an FI. Since the CI execution frequency may depend on input
data, the FV needs to be updated at run time to reflect recent CI execution frequen-
cies. The run-time system of RISPP (see Fig. 2.6) uses an Online-Monitoring and
a Prediction scheme to dynamically update the expected CI execution frequencies.

The Decoder triggers the modules of the run-time system when CIs or FIs are
encountered in the instruction stream. For a CI, the Execution Control manages
the execution mode (i.e., using cISA or a hardware Implementation Version) and
the Online-Monitoring counts the CI executions. The Prediction module uses the
difference between the initial FV and the monitored executions to adjust the FV for

11  Which Implementation Versions is used to implement a CI is determined at run time, but the
composition of individual Implementation Versions are not affected, therefore, they can be pre-
pared at compile time.
12  FIs and CIs are programmed as inline assembly. The assembler is extended to know about the
instruction formats and opcodes of all FIs and CIs occurring in the assembly code.

Table 2.1   High-level properties of implementation version and custom instruction
Operator for Implementation Version
�m or Custom Instruction s

Description

int l = �m.getLatency() An Implementation Version has certain execution
latency (in cycles)

s = �m.getCI () This function returns the CI of an Implementation
Version along with the corresponding information

�m = s.getCISAImpV () Returns that Implementation Version of a CI that uses
the cISA for execution

�m = s.getFastestAvailImpV (�a) This function returns the fastest Implementation Ver-
sion �m of the CI s that can be implemented with
the available Data Paths �a

intf = s.getExpectedExecut ions() This function returns the expected number of execu-
tion of the CI s in a particular computational hot
spot. This frequency depends upon the input data
and it is estimated by an online-monitoring scheme

�s.add(i) Add one instance of the ith Data Path in the vector �s
�s.remove(i) Remove one instance of the ith Data Path from the

vector �s

2.3 Reconfigurable Processors

www.manaraa.com

40

the next execution. The predicted CI execution frequency is used by the Selection
to determine a set of Implementation Versions that maximizes the performance for
the given size of the reconfigurable fabric (i.e., the number of Data Paths that can
be reconfigured onto it at the same time). Afterwards, a set of required Data Paths
is determined from the selected Implementation Versions and the Scheduling deter-
mines the reconfiguration sequence of these Data Paths. In case there is no empty
DPC available in the hardware infrastructure, the Replacement determines which
Data Path should be replaced to load the new one. In the following, the key parts of
the run-time system are explained briefly.

Online-Monitoring:  A fair distribution of the reconfigurable fabric within a com-
putational hot spot depends upon the execution frequencies of CIs. An offline-pro-
filing provides average-case FVs (i.e., the prediction of expected CI executions) for
a particular application. Since the CI execution frequency may vary at run time, an
online-monitoring in conjunction with an error back-propagation scheme (based on
Temporal Difference) is used for fine-tuning/updating the FVs. It thereby enables
the adaptivity to changing CI requirements, e.g., a faster Implementation Version
is selected for a CI which is predicted to be executed more often compared to the
previous execution run. Typically the FVs of all CIs of a hot spot are indicated as
a so-called Forecast Block (FB, i.e., a set of predictions) to trigger the run-time
system once per hot spot. Figure 2.8 shows an example scenario using two Forecast
Blocks FB1 and FB2 where FB1 forecasts the execution of the CIA within a hot spot
and FB2 predicts that the hot spot execution is finished and the CIA is no longer
required [Bau09]. Figure 2.9 demonstrates the idea of fine-tuning the FVs by repre-
senting the control-flow graph of Fig. 2.8 as a linear chain of FBs for two iterations
of the outer loop [Bau09]. The CI executions between two Forecast Blocks FBt and
FBt + 1 are monitored as M( FBt + 1). Whenever the FBt + 1 is encountered, the differ-
ence between FV( FBt) and the monitoring value M( FBt + 1) is computed. In addition
to this difference, the Forecast Block FBt + 1 is also considered for computing the
error E( FBt + 1), as it may also predict some executions of that CI to come soon.
Equation 2.13 shows the computation of this error using parameter γ ∈ [0, 1] to
weigh the contribution of FV( FBt + 1). Afterwards, the error is back-propagated to
the preceding FB (see Eq. 2.14) where the parameter α ∈ [0, 1] is used to control
the strength of this back propagation. A moderate α value avoids thrashing and

2 Background and Related Work

Fig. 2.8   Example control-flow graph showing forecasts and the corresponding custom instruction
executions

Inner loop,
executing CIA

Other
inner
loops

Time for
reconfi-
guration

FB1: Forecasting
the upcoming
usage of CIA

FB2: Forecasting that CIA is
no longer required in this loop,

potentially forecasting other CIs

outer loop

LEGEND: Base Block Control Flow Forecast BlockFB

www.manaraa.com

41

provides smooth variations in the prediction. The so-called static prefetching (i.e.,
no fine-tuning at run time [LH02]) can be realized as a special case of this model
by using α = 0. Note, fine-tuning the FVs for multiple CIs is done independent of
each other.

� (2.13)

� (2.14)

Implementation Version Selection:  The concept of modular CIs allows RISPP to
dynamically determine which Implementation Version shall be used to implement a
CI, i.e., distributing the reconfigurable fabric among different CIs depending on the
run-time varying application requirements. The Selection is triggered for each com-
putational hot spot by Forecast Instructions. It determines the set of Implementation
Versions (to implement the forecasted CIs) that maximizes the overall performance
while considering the given size of the reconfigurable fabric. RISPP incorporates
a greedy algorithm for Selection that uses a profit function which considers the
CI execution frequency, the latency improvement, and the reconfiguration delay
of an Implementation Version. The coefficients of the profit functions are empiri-
cally computed. After the Implementation Versions are selected, the reconfiguration
sequence for the required Data Paths is determined as only one reconfiguration may
be performed at a time.

Reconfiguration-Sequence Scheduling:  It determines the sequence in which
Data Paths are reconfigured. This sequence is important (in terms of performance)
as it determines which Implementation Versions are available first to expedite the
computational hot spot. In RISPP, four different strategies are explored. The High-
est Efficiency First (HEF) scheduler is finally used due to its better performance
over other strategies. The HEF scheduler determines the upgrade Implementation
Version which is the most beneficial one (in terms of performance) on a scheduling
path while considering the latency improvement, the CI execution frequency, and

E(FBt+1) := M(FBt+1) − FV(FBt) + γ FV(FBt+1)

FV(FBt) := FV(FBt) + αE(FBt+1)

2.3 Reconfigurable Processors

Fig. 2.9   Execution sequence of forecast and custom instructions with the resulting error back
propagation and fine-tuning

TIME

CIA
executions

Time for
reconfi-
guration

Other inner
loops

Next iteration
of the outer

loop

error back-propagation,
targeting the location
of a previous FB

resulting fine-tuning, indirectly
changing the Forecast Value
for a future execution of FB1

FB1 = FBt

M(FBt+1)
FV(FBt) FV(FBt+1) FV(FBt+2)

M(FBt+2)
FV: Forecast Value
FB: Forecast Block

M: Monitoring Value

FB2 = FBt+1 FB1 = FBt+2

FB2 = FBt+3

www.manaraa.com

42

the amount of additionally demanded Data Paths. If a new Data Path is going to be
reconfigured and there is no free DPC available, some Data Path need to be replaced
which is determined by the Replacement.

Replacement:  The run-time system in RISPP employs a Minimum Degradation
replacement policy that considers the potential performance degradation for CIs
when replacing a Data Path. It replaces the one that leads to the overall smallest
performance degradation for the CIs. This policy aims to keep all CIs in a good per-
formance by searching the downgrade step with the smallest performance impact.

2.3.5.4  �Hardware Infrastructure for Communication and Computation

The Hardware Infrastructure (see Fig. 2.10) is partitioned into so-called Data Path
Containers (DPCs) and Bus Connectors (BCs) [Bau09]. The DPCs can be dynami-
cally reconfigured to contain one Data Path at a time, without affecting the other
parts. Each DPC is connected to a dedicated BC via so-called Bus Macros13 [Xil05]

13  Bus Macros are used to establish communication between the partially reconfigurable part (i.e.,
DPC) and the non-reconfigurable part (i.e., BC).

2 Background and Related Work

Fig. 2.10   Overview of the
hardware infrastructure for
computation (data path con-
tainer) and communication
(bus connector) showing the
internal composition of a bus
connector

Memory Controller

C
or

e
P

ip
el

in
e

IF

ID

MEM

WB

EXE

…

…

4 registers
input

2 registers
output

Bus
Conn-
ector

Bus
Conn-
ector

Bus
Conn-
ector

Data Path
Container

Bus Connector

D
at

a
P

at
h

C
o

n
ta

in
er

D
at

a
P

at
h

C
o

n
ta

in
er

Lo
ad

/S
to

re
U

ni
ts

 a
nd

A
G

U
s

Local
storage

Local
storage

M U X

M
U
X

M
U
X

M U X

M
U

X

M
U

X

D
Q

en

D
Q

en

www.manaraa.com

43

such that the communication resources are available during the reconfiguration of
the DPC (see connection details in [BSH08a]). The BC is connected to the adjacent
BCs using unidirectional segmented buses (4 buses in each direction) in order to
provide high-bandwidth parallel communication with low latency (single cycle).

Each BC contains two 4 × 32-bit local storages (1 write and 2 read ports each) to
temporarily store the Data Path output. A DPC may receive inputs from segmented
buses and/or local storages via BC-DPC latched input connections14. The data from
segmented busses can be directly written to the local storages and alternatively the
output of a local storage may drive any BC output. The control signals are provided
to BCs in each cycle using 1024-bit Very Long Control Words (VLCWs) in order
to determine the connections between different DPCs. This Hardware Infrastructure
is connected to the general-purpose register file of the core pipeline. Each DPC
provides a fixed interface with two 32-bit inputs, two 32-bit outputs, a 6-bit control
signal (provided in the VLCW), a clock signal and an 8-bit output to notify the sys-
tem about the currently loaded Data Path. Two 128-bit Load/Store Units are used to
access two independent high-bandwidth memory ports in parallel and the Address
Generation Units provide addresses to the Load/Store Units.

2.4  �Low-Power Approaches in Reconfigurable Processors

Previous approaches in reconfigurable processors (like OneChip [WC96], CoM-
PARE [SGS98], Proteus [Dal03], Molen [VWG+04], and RISPP [BSH08b;
BSH08c]) have mainly concentrated on improving the performance by reconfig-
uring application-specific hardware accelerators at run time to meet applications’
demands and constraints. This reconfiguration process may consume a noticeable
amount of energy. Consequently, the major shortcoming of these reconfigurable
processors is their high energy consumption compared to ASICs and lack of ef-
ficient energy management features [Te06]. Moreover, with the evolution of sub-
micron fabrication technologies, the consideration of leakage power/energy has
become imperative in the energy-aware design of reconfigurable processors. A ba-
sic shutdown infrastructure is required to provide a foundation to exert high-level
power and energy management schemes like the one proposed in this monograph
(Chap. 5). Several academic and industrial research projects have already made the
case for such shutdown infrastructure (see details in Sect. 2.3.2). In the following,
prominent design-, compile-, and run-time low-power related work for FPGAs and
reconfigurable processors is presented.

Design-Time Approaches:  Several design-time low-power architectural
approaches for FPGAs are presented in [CWL+05; Te06]. A 90 nm low-power
FPGA for battery-powered applications is introduced in [Te06]. It supports voltage

14  The latch disconnects the Data Path of the DPC from the not-demanded external inputs, thus
avoiding unnecessary toggles and reducing the dynamic power consumption of the Data Paths.

2.4 � Low-Power Approaches in Reconfigurable Processors

www.manaraa.com

44

scaling, power-shutdown, and a low-leakage configuration SRAM. The authors in
[CWL+05] presented a trace-based timing and power evaluation method for device
and architecture co-optimization for FPGA power reduction by exploring the design
space of Vt and Vdd. The approach in [RP04] uses body biasing, multi-Vt logic,
and gate biasing to reduce the leakage in FPGAs. A fine-grained leakage optimiza-
tion techniques is presented in [MM05] that performs shutdown of the configura-
tion SRAM of the unused LUTs. The authors in [LLH07] showed that too-high Vt
transistors for leakage reduction in the configuration SRAM result in an increased
reconfiguration time, thus leading to higher reconfiguration energy. These design-
time approaches (e.g., [CWL+05; Te06]) provide the infrastructure to enable run-
time adaptive energy management schemes, the domain in which the contribution
of this monograph lies.

Compile-Time Approaches:  Besides design-time approaches, compile-time
approaches typically target power-aware placement [Ge04], software partition-
ing and mapping [GE08], co-processor selection [Ge07] etc. A region-constrained
placement is presented in [Ge04] to reduce leakage energy in FPGAs by increasing
the number of unused regions to be switched off. An energy-optimal software par-
titioning scheme for heterogeneous multiprocessor systems is presented in [GE08]
incorporating a resource model considering the time and energy overhead of run-
time mode switching. The authors in [GE08] optimized the software partitioning at
compile-time by formulating it as an Integer Linear Programming (ILP) problem.
An ILP-based energy-aware co-processor selection for reconfigurable processors
is proposed in [Ge07]. However, compile-time techniques for power-reduction
(placement, partitioning, co-processor selection etc.) are not able to react to run-
time changing scenarios, thus they perform inefficient in that respect.

Run-Time Approaches:  The authors in [Ge04] additionally proposed a time-based
power-shutdown scheme for run-time leakage minimization. However, [Ge04] does
not consider which parts of the reconfigurable fabric are beneficial to shutdown at
what time when considering partial run-time reconfiguration. A run-time approach
in [Ne08] incorporates operand isolation and selective context fetching to reduce
the power in reconfigurable processors. The authors in [PP08] presented a method-
ology for energy-driven application’s self-adaptation using run-time power estima-
tion. However, these approaches target reducing dynamic energy and ignore the
leakage energy and power-shutdown. Several approaches in dynamic energy man-
agement incorporate Dynamic Voltage and Frequency Scaling (DVFS) techniques.
The authors in [Qe07] employed configuration pre-fetching and configuration par-
allelism (using multiple configuration controllers) to create excessive system idle
time and then employs voltage scaling on the configuration process to reduce the
configuration energy in run-time reconfigurable processors. A low-power version of
the Warp Processor [LSV06] is proposed in [Lys07]. It performs online profiling and
online synthesis to automatically determine and synthesize suitable hardware accel-
erators at run time with a support of DVFS to dynamically reduce the power con-
sumption. The approach in [HL07] co-schedules the hardware and software tasks at

2 Background and Related Work

www.manaraa.com

45

run-time by using slack time. The slack time is introduced by reusing hardware task
configurations to trigger the voltage scaling such that the preceding software tasks
consume lesser power. DVFS techniques target on finding out the slack time in the
execution pattern to reduce voltage and frequency. DVFS alone would not solve
the problem of energy-minimizing instruction set in reconfigurable processors (see
Sect. 5.3, p. 133) especially when considering the changing execution frequencies
of Custom Instructions. The main challenge here is to minimize the overall energy
under run-time varying constraints while considering the power-shutdown decision
at a higher abstraction level (as discussed in Chap. 5). Yet, DVFS schemes (e.g.,
[Qe07; Te06]) may be integrated with the proposed contribution to achieve even
further energy reduction.

2.5  �Summary of Related Work

The application-/algorithm-level related work on H.264 encoder either reduce the
coding complexity by sequentially excluding the improbable candidate coding
modes or by employing adaptive fast Motion Estimation schemes. However, state-
of-the-art adaptive, fast, low-power, and scalable Mode Decision and Motion Esti-
mation approaches either only consider a fixed quality-constrained solution or offer
scalability with fixed termination rules that may lead to severe quality artifacts.
These approaches do not provide run-time adaptivity when considering run-time
varying energy-budgets, input video sequence characteristics, and user-defined con-
straints. As a result, these approaches are less energy-/power-efficient.

For designing an adaptive low-power multimedia system there is a need to com-
bat the power and adaptivity related issues at both application and processor levels
[FHR+10]. Majority of the multimedia systems are designed for heterogeneous MP-
SoCs, where different applications components (like video encoder/decoder, audio
encoder/decoder, etc.) are implemented as an ASIC or ASIP. The programmability
is mainly achieved by deploying DSPs, where the flexible parts are executed on the
DSP. Most of the video encoding solutions (considering the advanced H.264 video
encoder which is 10 ×  more complex compared to the previous generations of en-
coding standards) target ASIC implementations to achieve low power. However,
several works have also considered DSP or ASIP based implementations. Moreover,
there are several ASIC-based solutions for different functional blocks of the H.264
video encoder that exploit pipelining and parallelism. On the one hand, ASIC-based
implementations are less flexible and are not amenable to the run-time varying con-
straints and standard evolution trends, especially considering short time-to-market.
On the other hand, the major shortcoming of multimedia MPSoCs is their design-
time selection of cores depending upon an initial set of application requirements.
Since the cores are optimally selected for a set of initial requirements, these MP-
SoCs may not fulfill the required performance and/or power constraints when there
is a change in the application requirements, design constraints, standard change, etc.

2.5 Summary of Related Work

www.manaraa.com

46

Moreover, such MPSoCs may not handle the advanced multimedia standards (that
exhibit unpredictable computational behavior and/or subjected to run-time varying
constraints of available energy) in a power efficient way, especially when consider-
ing short time-to-market and short-term standard evolutions and product upgrades.
Furthermore, the previous approaches lack run-time adaptivity when considering
varying energy budgets and area/performance constraints.

Dynamically reconfigurable processors provide an alternate solution by exploit-
ing the high degree of parallelism along with a high degree of adaptivity. Previous
approaches in reconfigurable processors have mainly focused on improving the per-
formance by reconfiguring application-specific hardware accelerators at run time to
meet applications’ demands and constraints. However, due to the reconfiguration
process and the fabric nature to support high configurability, these reconfigurable
processors suffer from high energy consumption compared to ASICs and lack of
efficient energy management features. Recently, low-power design, especially the
leakage power reduction, has become a key research focus in reconfigurable com-
puting. Several academic and industrial research projects have already made the
case for power-shutdown infrastructure. Such an infrastructure is required to en-
able run-time adaptive energy management schemes, as the one proposed in this
monograph.

State-of-the-art low-power approaches employ a hardware-oriented shutdown
based on the state of a particular hardware. However, in dynamically reconfigurable
processors, such a technique will perform inefficient as it cannot be determined at
compile time which Custom Instructions will be reconfigured on which parts of
the reconfigurable fabric. Moreover, state-of-the-art techniques do not evaluate the
tradeoff between leakage, dynamic, and reconfiguration energy at run time which is
inevitable when considering design-/compile-time unpredictable scenarios of appli-
cation execution (changing performance constraints, input data, etc.) and available
area and energy budgets.

The low-power and adaptivity concerns for multimedia systems with advanced
video codecs (subjected to unpredictable scenarios) are addressed by the proposed
adaptive low-power reconfigurable processor architecture and an energy-aware
H.264 video coding application architecture. At the processor level the novel con-
cept of Selective Instruction Set Muting (with multiple muting modes) allows to
shun the leakage energy at the abstraction level of Custom Instructions. This enables
a far higher potential for leakage energy saving. Furthermore, the proposed adaptive
energy-management scheme comprehensively explores the tradeoff related to leak-
age, dynamic, and reconfiguration energy under run-time varying performance and
area constraints. At the application architecture level, the novel concept of Energy-
Quality Classes enables a run-time tradeoff between the energy consumption and
the resulting video quality. The concept of Energy-Quality Classes along with an
adaptive energy-budgeting scheme provides a foundation for energy-aware Motion
Estimation. The energy-aware Motion Estimation and an adaptive complexity re-
duction scheme realize an adaptive low-power video encoder application architec-
ture. The detailed issues and energy analysis at both application and processor level
are discussed in Chap. 3. This chapter also provides an overview of the proposed

2 Background and Related Work

www.manaraa.com

47

processor and application architectures followed by the power model used by both
architectures for adaptive energy management. In Chap. 4 the adaptive low-power
video encoding is discussed. Chapter 5 presents the adaptive low-power reconfigu-
rable processor architecture with run-time adaptive energy management scheme.
The comparison with sastate-of-the-art is presented in Chap. 7.

2.5 Summary of Related Work

www.manaraa.com

49

In this chapter an overview of the proposed application and processor architectures
for embedded multimedia systems is presented, highlighting different steps
performed at design, compile, and run time. The details of these architectures are
provided in Chaps. 4 and 5. First, Sect. 3.1 discusses an H.324 video conferencing
application and provides the processing time distribution of different computational
hot spots of various application tasks. In Sect. 3.1.1, the coding tool set of advanced
video codecs is analyzed and similarities between different coding standards are
highlighted, while corroborating the selection of the H.264/AVC video coding
standard for this monograph. In Sect. 3.1.2, energy and adaptivity related issues
in the H.264 video encoder application are analyzed and discussed. Together with
these, other issues for dynamically reconfigurable processors are discussed in
Sect. 3.2. Afterwards, Sect. 3.3 presents an overview of the proposed application
and processor architectures along with different steps to be performed at design,
compile, and run time. At the end, the proposed power model for dynamically
reconfigurable processors is discussed in Sect. 3.4, highlighting different power
consuming components from the computation and communication infrastructure of
the processor.

3.1  �Analyzing the Video Coding Application for Energy
Consumption and Adaptivity

In current and emerging mobile devices, energy/power is a critical design param-
eter and multimedia is a major application domain. These multimedia applications
with advanced video encoders—due to their huge amount of processing and energy
requirements—pose a serious challenge on low-cost/low-power embedded sys-
tems. In the following a video conferencing application is discussed highlighting
the dominance of an advanced video encoder with respect to its computational and
energy requirements along with the inherent adaptivity. The inherent adaptivity will
be discussed to highlight issues that can be exploited for run-time energy manage-
ment at both application and processor architecture levels.

Chapter 3
Adaptive Low-Power Architectures  
for Embedded Multimedia Systems

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3_3, © Springer Science+Business Media LLC 2011

www.manaraa.com

50

Figure 3.1 shows the block diagram of a video conferencing application, which
is envisaged to be an important application in future mobile devices for video calls.
A video conferencing is composed of a video encoder/decoder with video pre-/post-
processing modules, an audio encoder/decoder, a multiplexer, and a communication
protocol. In order to achieve a high compression and better video quality, typically
an advanced video encoder (like H.264/AVC [ITU05]) is employed. In order to find
out the computational hot spots and their relative complexity, profiling has been
performed.

Figure 3.2 illustrates the average-case distribution of the processing time (in per-
centage) of various tasks of the video conferencing application. It is noticed that
more than 70% computations are consumed by the H.264 video codec (encoder
consumes > 60%). The remaining computational quota is allocated to the video pre-
and post-processing and the G.723 audio codec. Less than 10% is reserved for the
remaining tasks. It shows that video coding is the dominant application task in the
video conferencing application. This statement holds true for various other multi-
media applications, like personal video recording, etc. Therefore, in the remaining
part of this monograph, video encoding is considered as the key application for
energy reduction. Moreover, unlike video decoding (which is fixed by the standard),
video encoding exhibits a great potential for energy reduction at the application lev-
el due to non-normative parts (e.g., Motion Estimation and Mode Decision are not
fixed by the standard), as it will be discussed in the remaining sections and Chap. 4.

In the following, the coding tool set of various video coding standards is com-
pared in order to justify the selection of H.264/AVC. Afterwards, the energy and
adaptivity related issues in the H.264 video encoder will be discussed in Sect. 3.1.2.

Fig. 3.1   Overview of an H.324 video conferencing application with H.264/AVC codec

3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

www.manaraa.com

51

3.1.1  �Advanced Video Codecs: Analyzing the Tool Set

Table 3.1 presents a comparison of the coding tool set of various advanced video en-
coding standards [ITU05, 09; Joi08, 10; KL07; Mic10a, b; Ric03, 10; YCW09]. The
Microsoft VC-1 standard and Chinese Audio Video Standard (AVS) belong to the
same generation period as of the H.264/AVC. Multiview Video Coding is the latest
extension (finalized in 2008 [Joi08]) of H.264 for 3D-videos where a 3D-scene is
captured by multiple cameras. H.265/HEVC (High Efficiency Video Coding) be-
long to the next generation of video codecs and it is expected to be standardized
by the end of 2012 [Joi10]. It is worthy to note that within the same generation, the
coding tool set of H.264/AVC is the most complex one that also results in a relative-
ly better coding efficiency. As discussed in Chap. 2, Motion Estimation and Rate
Distortion Optimized Mode Decision are the most critical components of a video
encoder from computation complexity and energy reduction point of views. It can
be noted that within the same generation, H.264/AVC offers the highest number of
coding mode options (see variable-block sized Motion Estimation and Intra Predic-
tion modes in Table 3.1). Moreover, the coding options offered by AVS and VC-1
are approximately a subset of the coding options of H.264/AVC. Therefore, the
application-level energy reduction algorithms and the application architecture for

Fig. 3.2   Processing time distribution of different functional blocks in the H.324 video conferenc-
ing application

3.1 Analyzing the Video Coding Application for Energy Consumption and Adaptivity

www.manaraa.com

52 3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

C
od

in
g

to
ol

s
A

dv
an

ce
d

vi
de

o
en

co
di

ng
 st

an
da

rd
s

H
.2

64
/A

V
C

 (A
dv

an
ce

d
V

id
eo

 C
od

in
g)

A
ud

io
 V

id
eo

St

an
da

rd
 (A

V
S)

M
ic

ro
so

ft
V

C
-1

M
ul

tiv
ie

w
 V

id
eo

C

od
in

g
(M

V
C

)
H

.2
65

/H
EV

C
 (H

ig
h

Ef
fic

ie
nc

y
V

id
eo

 C
od

in
g)

Fr
am

e
ty

pe
I,

P,
 B

, S
P,

 S
I

I,
P,

 B
I,

P,
 B

, B
I,

Sk
ip

pe
d

P
I,

P,
 B

I,
P,

 B
, …

Va
ri

ab
le

-b
lo

ck
 si

ze
d

m
ot

io
n

es
tim

at
io

n
16

 ×
 16

, 1
6 ×

 8,
 8

 ×
 16

,
8  ×

  8,
 4

  ×
  8,

 8
  ×

  4,

4  ×
  4

16
 ×

 16
, 1

6 ×
 8,

8 ×

 16
, 8

 ×
 8

16
 ×

 16
, 1

6 ×
 8,

 8
 ×

 16
,

8 ×
 8,

 4
 ×

 8,
 8

 ×
 4,

4 ×

 4

16
 ×

 16
, 1

6 ×
 8,

8  ×

  16
, 8

  ×
  8,

4 ×

 8,
 8

 ×
 4,

 4
 ×

 4

G
eo

m
et

ry
 B

lo
ck

 P
ar

tit
io

ni
ng

A
sy

m
m

et
ric

 B
lo

ck
 P

ar
tit

io
ni

ng

T r
an

sf
or

m
 si

ze
4  ×

  4,
 8

  ×
  8

8  ×
  8

4  ×
  4,

 8
  ×

  8,
 8

  ×
  4,

 4
  ×

  8
4  ×

  4,
 8

  ×
  8

A
da

pt
iv

e
(m

ay
 a

ls
o

ha
ve

 8
 ×

  8)
Tr

an
sf

or
m

In
te

ge
r D

C
T,

H

ad
am

ar
d

In
te

ge
r D

C
T

D
C

T
In

te
ge

r D
C

T,

H
ad

am
ar

d
La

rg
e

Tr
an

sf
or

m
 (1

6  ×
  16

–6
4  ×

  64
),

R
ot

at
io

na
l/M

od
e

D
ep

en
de

nt

D
ire

ct
io

na
l T

ra
ns

fo
rm

M
ot

io
n

ve
ct

or
 re

so
lu

tio
n

1/
4-

pi
xe

l (
6-

ta
p

an
d

B
ili

ne
ar

 fi
lte

r)
1/

4-
pi

xe
l (

4-
ta

p
fil

te
r)

1/
4-

pi
xe

l (
4-

ta
p

fil
te

r)
1/

4-
pi

xe
l (

6-
ta

p
an

d
B

ili
ne

ar
 fi

lte
r)

1/
8-

pi
xe

l (
se

pa
ra

bl
e,

 n
on

-s
ep

ar
ab

le
,

or
 d

ire
ct

io
na

l a
da

pt
iv

e
in

te
rp

o-
la

tio
n

fil
te

r)
, a

da
pt

iv
e

m
ot

io
n

ve
ct

or
 re

so
lu

tio
n

SK
IP

 m
od

e
M

B
-L

ev
el

M
B

-L
ev

el
Fr

am
e-

Le
ve

l
M

B
-L

ev
el

M
B

-L
ev

el
M

ax
im

um
 n

um
be

r o
f

re
fe

re
nc

e
fr

am
es

16
 e

ac
h

w
ay

2
ea

ch
 w

ay
1

ea
ch

 w
ay

16
 e

ac
h

w
ay

A
da

pt
iv

e
w

ar
pe

d
re

fe
re

nc
e

In
tr

a
pr

ed
ic

tio
n

m
od

es
 &

bl

oc
k

si
ze

s
Lu

m
a:

 1
6 ×

 16

(4
 m

od
es

),
4  ×

 4
(9

 m
od

es
);

C
hr

om
a:

 8
 ×

 8
(4

 m
od

es
)

8  ×
 8

(5
 m

od
es

fo

r L
um

a
an

d
4

m
od

es
 fo

r
C

hr
om

a)

N
on

e
Lu

m
a:

 1
6  ×

  16

(4
 m

od
es

),
4 ×

 4
(9

 m
od

es
);

C
hr

om
a:

 8
 ×

 8
(4

 m
od

es
)

A
da

pt
iv

e
re

fe
re

nc
e

sa
m

pl
e

sm
oo

th
-

in
g,

 p
la

na
r o

r a
ng

ul
ar

 p
re

di
ct

io
n,

ar

bi
tra

ry
 d

ire
ct

io
na

l I
nt

ra
 (A

D
I)

,
C

om
bi

ne
d

In
tra

 P
re

di
ct

io
n

(C
IP

)

En
tro

py
 c

od
in

g
m

od
e

C
AV

LC
, C

A
B

A
C

C
A

-2
D

-V
LC

,
C

A
B

A
C

A
da

pt
iv

e
V

LC
C

AV
LC

, C
A

B
A

C
Lo

w
-c

om
pl

ex
ity

 e
nt

ro
py

 c
od

in
g

w
ith

 V
LC

 c
od

es
, h

ig
h

co
di

ng

ef
fic

ie
nc

y
w

ith
 V

2V
 c

od
es

In
-lo

op
 d

eb
lo

ck
in

g
fil

te
r

5
st

re
ng

th
 c

as
es

3
st

re
ng

th
 c

as
es

Ye
s

5
st

re
ng

th
 c

as
es

A
da

pt
iv

e
po

st
-lo

op
 fi

lte
rs

, I
nt

ra

pl
an

ar
 m

od
e

fil
te

rin
g

Ta
bl
e
3.
1  

C
om

pa
rin

g
th

e
co

di
ng

 to
ol

 se
t o

f v
ar

io
us

 v
id

eo
 e

nc
od

in
g

st
an

da
rd

s

www.manaraa.com

53

adaptive low-power video coding are equally applicable to AVS and VC-1. Since
Multiview Video Coding is an extension of H.264, the proposed contribution can be
easily extended towards Multiview Video Coding. Further energy reduction can be
obtained by extending the analysis to 3D, i.e., by exploiting the extensive correla-
tion space of the 3D-neighborhood (see Sect. 8.2 for future works).

When considering the evolution of the video coding standards, it can be noticed
in Table 3.1, that H.265/HEVC extends the computation and coding mode model of
H.264 by providing further adaptivity, thus further extending the conventional data
dominant processing to control dominant processing. High adaptivity is planned to
be employed in the H.265 standard to achieve 2× higher coding efficiency compared
to the H.264/AVC coding standard [ITU05]. Since adaptivity is the key property
in various algorithms employed in different functional blocks of the H.265/HEVC
standard, the proposed adaptive low-power processor architecture will provide a
good foundation for researching energy-efficient multimedia solutions. Moreover,
the adaptive low-power video coding concepts (as proposed in Chap. 4) can also
be extended towards further adaptivity, especially the proposed concept of Energy-
Quality Classes for energy-aware Motion Estimation (see details in Sect. 4.5) will
be equally beneficial for H.265/HEVC. However, the SAD computation unit need
to be replaced according to the new block partitioning structure. Furthermore, the
Macroblock categorization based on the spatial and temporal video properties while
considering the Human Visual System (see details in Sects. 4.3 and 4.4) will also
be beneficial. However, its usage may be adapted depending upon the final set of
coding options adopted by the standardization committee.

As corroborated by the above discussion, H.264/AVC is considered for research-
ing the adaptive low-power video coding which is a primitive component of current
and upcoming embedded multimedia systems. In the subsequent chapters, the dis-
cussion will be more focused towards the H.264/AVC encoding.

3.1.2  �Energy and Adaptivity Related Issues in H.264/AVC  
Video Encoder

Video encoding consumes a significant amount of processing time and energy. En-
coding effort highly depends upon the characteristics of the input video sequence
and the target bit rates. Moreover, the available energy budgets may change accord-
ing to various application scenarios on mobile devices. Under changing scenarios
of input data characteristics and available energy budgets, embedded solutions for
video encoding require run-time adaptivity.

The advanced video coding standard H.264/AVC [ITU05] provides double com-
pression compared to previous coding standards (MPEG-2, H.263, etc.) [WSBL03]
at the cost of additional computational complexity (∼ 10× relative to MPEG-4 ad-
vance simple profile encoding [OBL+04]). This directly corresponds to high en-
ergy consumption. This increased energy consumption of H.264 is mainly due to

3.1 Analyzing the Video Coding Application for Energy Consumption and Adaptivity

www.manaraa.com

54

its complex Motion Estimation (ME) and Rate Distortion Optimized Mode Deci-
sion (RDO-MD) processes. It is worthy to note that RDO-MD is the most critical
functional block in H.264, as it determines the number of ME iterations. Therefore,
complexity reduction at the stage of RDO-MD is required first, before proceeding
to the energy reduction at the ME stage.

As discussed in Sect. 2.2.3, many efforts have been made in developing fast
Mode Decision schemes for H.264 to reduce the complexity of encoding [ADV-
LN05; GY05; JC04; JL03; KC07; LWW+03; MAWL03; PC08; PLR+05; SN06;
WSLL07; Yu04]. However, most of these state-of-the-art RDO-MD approaches
sequentially process and eliminate the modes depending upon the result of the pre-
viously evaluated modes. Therefore, modes are not excluded in the fast RDO-MD
until some ME is not done. As a result, these approaches still compute a significant
(more than half of all) number of modes or even in the best case at least one mode
from both P-MB and I-MB is processed (see [GY05; JC04]). Since the ME is al-
ways processed in any case, the computational requirements of the state-of-the-art
are still far too high, which makes them infeasible for low-power embedded multi-
media systems. Therefore, there is a dire need for a complexity reduction scheme
that can adaptively exclude as many coding modes as possible from the candidate
mode set (as used for the Mode Decision process) at run time even before starting
the actual fast RDO-MD and ME processes.

Such a scheme is more critical for low-power video encoding solutions as it
may avoid the complete ME process (the most energy consuming functional block
of an encoder, see Fig. 3.3). A good complexity reduction scheme needs to predict
the possible coding mode with a high accuracy that requires an in-depth knowledge
of the spatial and temporal properties of the video data. It requires a relationship
between the video properties and the probable coding mode. A high accuracy of the
coding mode prediction also requires a joint consideration of the spatial and tem-
poral video properties. For low power consumption, an aggressive mode exclusion
may be desirable that needs to consider the properties of the Human Visual Sys-

3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

Fig. 3.3   Percentage distribution of energy consumption of different functional blocks in the H.264
video encoder

www.manaraa.com

55

tem in order to analyze the subjective impact of the coding modes. It is worthy to
note that for extracting the spatial and temporal video properties, additional image
processing operations are required that incur a power and performance overhead.
Therefore, the overhead of the extra processing must be amortized by the significant
complexity and energy reduction offered by the scheme. After a coding mode is
predicted, the most energy consuming part of an encoder is the Motion Estimation
process.

Figure 3.3 shows the distribution of energy consumption for different functional
blocks1 of an H.264 encoder. Figure 3.3 shows that ME is one of the most compute-
intensive and energy demanding functional blocks of an H.264 encoder. It can be
noticed that ME may consume up to 65% (Integer-pixel-ME  =  56%, Fractional-
pixel ME = 9%) of total encoding energy. The energy consumption of ME is directly
proportional to the number of computed SADs (Sum of Absolute Differences) to
determine the best match (i.e., the MB with the minimum distortion). As discussed
in Sect. 2.2.3, state-of-the-art adaptive, fast, low-power, and scalable ME schemes
provide a fixed quality-constrained solution or alternatively offer scalability with
fixed termination rules that may lead to severe quality artifacts. These approaches
do not provide run-time adaptivity when considering the following run-time vary-
ing scenarios:

1.	 available energy (may change due to a changing battery level or changing allo-
cated energy in a multi-tasking system for different application cases)

2.	 video sequence characteristics (motion type, scene cuts, etc.)
3.	 user-defined coding conditions (duration, quality level, etc.)

As a result, these approaches are less energy-/power-efficient. Therefore, an en-
ergy-aware Motion Estimation scheme is desirable that dynamically adapts its
configuration considering the above-mentioned run-time varying scenarios while
keeping a good video quality (PSNR). Since the video data has diversity (i.e., differ-
ent frames and/or different MBs in a frame have different spatial and temporal prop-
erties), such an energy-aware ME needs to provide a tradeoff between the available
energy budget and resulting video quality. Therefore, the key challenge here is: how
much energy budget should be allocated to the ME of one video frame or even one
MB when considering run-time varying scenarios. The number of SAD computa-
tions are then determined from the allocated energy-budget of an MB. It needs to
be considered that more energy should be allocated to a fast moving and highly-
textured MB compared to a stationary or slow moving MB. Since a less ME effort
for a fast moving textured MB may result in noticeable quality degradation, care-
fully allocating the energy budget to different frames and MBs is crucial. Therefore,
the energy-aware ME needs to be equipped with an integrated run-time adaptive
energy-budgeting scheme.

1  In this experiment the fast adaptive motion estimator UMHexagonS [CZH02] is used to have a
realistic distribution.

3.1 Analyzing the Video Coding Application for Energy Consumption and Adaptivity

www.manaraa.com

56

3.2  �Energy- and Adaptivity Related Issues  
for Dynamically Reconfigurable Processors

In Chaps. 1 and 2, it was motivated that dynamically reconfigurable processors pro-
vide means for run-time adaptivity at the processor level and they are particularly
beneficial in applications with hard-to-predict behavior where conventional em-
bedded processors operate inefficiently with respect to energy/power consumption.
However, previous approaches in reconfigurable processors (like OneChip [WC96],
CoMPARE [SGS98], Proteus [Dal03], Molen [VWG+04], and RISPP [BSH08b, c])
have mainly focused on performance improvement and efficient area utilization
while meeting applications’ demands and constraints. These reconfigurable proces-
sors suffer from the overhead of reconfiguration energy and high leakage due to
their fabric structure. Consequently, the major shortcoming of these processors is
their high energy consumption (compared to ASICs) and lack of efficient energy
management features [Te06]. Moreover, with the evolution of sub-micron fabrica-
tion technologies, the consideration of leakage power/energy has become impera-
tive in the energy-aware design of reconfigurable processors. Efficient high-level
energy management schemes are required that utilize the underlying power shut-
down infrastructure (as proposed by [Ge04; MM05; Te06]) to achieve relatively
higher leakage reduction. When targeting a high-level energy management scheme,
it needs to be considered that, in reconfigurable processors it cannot be determined
at compile time which Custom Instruction (CIs) will be reconfigured on which parts
of the reconfigurable fabric. This depends upon many factors, for instance, due to:

1.	 Application-level unpredictability: the execution frequency of CIs of a computa-
tional hot spot may vary due to the changing input video sequence characteristics
(e.g., texture properties, motion type, scene cuts) or user-defined coding condi-
tions (e.g., quality level, target bit rate).

2.	 Compile-/design-time unpredictable scenarios in a multi-tasking system

a.  which task will obtain which share of the reconfigurable fabric
b.  what is the task priority (may change at run time)
c. � which task will run under which performance constraint, e.g., due to chang-

ing user preferences (e.g., desired frames per second in case of the H.264
application)

3.	 available energy (may change due to a changing battery level or changing allo-
cated energy in a multi-tasking system)

Let us analyze the case of application level unpredictability in detail using an ana-
lytical study of H.264 video encoder showing the varying computational require-
ments of the H.264 video encoder application (as discussed in Sect. 3.1.2) due to
various coding modes, MB types, and ME configurations. Figure 3.4 illustrates the
analysis for the distribution of MB types for different sequences with diverse mo-
tion properties. In case of high motion, the ratio of I-MBs is dominant. In case of
slow-to-medium motion, the number of P-MB is dominant. Kindly note that, such

3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

www.manaraa.com

57

a distribution of I-MB/P-MB cannot be predicted at compile time as the input video
sequence is typically unknown. It should be noted that the CIs for I-MBs and P-
MBs require different kinds of Data Paths (i.e., elementary hardware accelerators).
Therefore, for changing I-MB/P-MB distribution, the corresponding CIs (and Data
Paths) will be executed in different frequencies. Summarizing, it is hard to predict
at design/compile time that which share of available reconfigurable fabric will be
used to accelerate which CIs and where on the fabric their Data Paths will be re-
configured.

Considering the unpredictability from various sources (as discussed above) and
significant reconfiguration and leakage power of the reconfigurable processors,
several challenging issues should be addressed by a high-level energy man-
agement scheme at run time, which is the key to realize an adaptive low-power
reconfigurable processor architecture. These challenging issues are:

1.	 Is it beneficial to shutdown regions of the reconfigurable fabric to reduce its
leakage (and execute CIs using the core Instruction Set Architecture) or to use
a larger share of the reconfigurable fabric to decrease the application execution
time at the cost of a higher reconfiguration energy?

a. � This highly depends upon the performance constraints, application character-
istics, and the input data properties.

b. � Therefore, it is not trivial to decide under which circumstances the execution
using a reconfigurable fabric is energy-efficient or not.

2.	 How to predict which set of Custom Instructions (CIs) will minimize the energy
consumption of a given computational hot spot when considering leakage,

3.2 Energy- and Adaptivity Related Issues for Dynamically Reconfigurable Processors

Fig. 3.4   Distribution of I-MBs in slow-to-very-high motion scenes (test conditions: group of
pictures=IPPP…, CAVLC, quantization parameter = 28, 30fps)

www.manaraa.com

58

reconfiguration, and dynamic energy under scenarios of run-time changing per-
formance and/or area constraints?

a. � At some point in time leakage energy may dominate, while at some other
points in time (e.g., due to changed system constraints), reconfiguration
energy may dominate.

b. � Decisions made solely at design/compile time will therefore with high cer-
tainty lead to energy-inefficient scenarios.

c. � Hence, a run-time adaptive scheme is desirable that chooses an energy mini-
mizing set of CIs under varying constraints and then apply shutdown to the
temporarily unused set of CIs, such that the total energy consumption is
minimized.

d. � A comprehensive power model for dynamically reconfigurable processors is
required to facilitate an energy management scheme.

3.	 At which level the power-shutdown decision should be determined?

a. � State-of-the-art approaches (as discussed in Sect. 2.4) employ a hardware-ori-
ented shutdown, i.e., the power-shutdown signal is issued based on the usage/
state of a particular hardware. However, as discussed above, in dynamically
reconfigurable processors such a technique will perform inefficient as it can-
not be determined at compile time which CIs will be reconfigured on which
parts of the reconfigurable fabric.

b. � Therefore, there is a need to raise the abstract level of the power-shutdown
decision to the abstraction level of CIs (i.e., an instruction set oriented shut-
down) considering the execution length of computational hot spots, i.e., the
execution context of an application.

4.	 Given that the logic and configuration SRAM can be independently shutdown
(supported by an appropriate shutdown infrastructure, see Sect. 5.2.2), what kind
of different shutdown modes can be realized?

a. � Given multiple shutdown modes (as it will be discussed in Chap. 5), how to
determine which shutdown mode is beneficial for which set of CIs at what
time under run-time varying application contexts?

b. � Which muting (i.e., shutdown) modes for CIs will bring more energy reduc-
tion while jointly considering the leakage, dynamic, and reconfiguration
energy?

c. � This decision depends upon the execution length of the computational hot
spots during which different CIs are used for the application acceleration in
different execution frequencies.

d. � Moreover, this decision also depends upon the requirements of upcoming hot
spot executions and the performance constraints (i.e., more or less reconfigu-
rable fabric is required to accelerate hot spots).

e.  Therefore, a Selective Instruction Set Muting technique is required.

Chapters 4 and 5 of this monograph provide algorithms and strategies to address the
above-mentioned challenging issues at the application and processor architecture

3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

www.manaraa.com

59

levels, respectively. In the following, a brief overview of the proposed architectures
is provided highlighting the design-, compile-, and run-time steps and requirements
from both application architecture and processor architecture perspectives.

3.3  �Overview of the Proposed Architectures and  
Design Steps

Figure 3.5 presents an overview of the monograph contribution for adaptive low-
power application and processor architectures in order to address the above-men-
tioned challenging issues. Adaptive low-power video encoding is realized by in-
corporating adaptive algorithms at the application level that react to the changing
battery status, video properties, and user constraints at run time.

At the application level the energy reduction is performed by adaptively reduc-
ing the computational requirements of various algorithms used by different func-
tional blocks in the H.264 video encoder (see Chap. 4 for details). First, application
architectural adaptations are performed targeting the reconfigurable processors (see
Sect. 4.1) and various low-power Custom Instructions and Data Paths are designed
(see design in Sect. 4.2). During the application execution, the complexity reduc-
tion is performed by adaptively excluding the highly improbable mode options from

3.3 Overview of the Proposed Architectures and Design Steps

Fig. 3.5   Overview of the adaptive low-power application and processor architectures

www.manaraa.com

60

the candidate coding mode set (see Sect. 4.4) using Human-Visual System based
Macroblock categorization (see Sect. 4.3). Quantization Parameter based threshold
models are developed to obtain precise categorization depending upon the coding
configuration. Once the final coding mode candidates are determined, adaptive en-
ergy-budgeting is performed for the Motion Estimation corresponding to each can-
didate coding mode. The predicted energy budget is forwarded to the energy-aware
Motion Estimation (see details in Sect. 4.5) to select an appropriate Energy-Quality
Class (i.e., the Motion Estimation configuration). Since the energy-aware adapta-
tions incur a quality loss as a side-effect, in order to compensate this quality loss, a
multi-level rate control is designed which determines the Quantization Parameter
value for each Macroblock considering its spatial and temporal properties (see Ap-
pendix A). It allocates more bits to the complex Macroblocks and less bits to the
less-complex ones.

At the processor level, the energy reduction is performed by determining an
energy-minimizing instruction set for given area and performance constraints (see
details in Sect. 5.3). It requires a power-model for power estimation (see Sect. 3.4).
Afterwards, the temporarily unused set of Custom Instructions is muted (i.e., shut-
down) to further reduce the leakage energy (see details in Sect. 5.4). For overall
processing, low-power Data Paths are reconfigured on the reconfigurable fabric.
The consumed energy is fed back to the application level algorithms and also to the
processor level algorithms for further adaptations based on the monitored results
(achieved performance, energy consumption, etc.).

Figure 3.6 shows an overview of the design-, compile-, and run-time steps at
both application and processor levels. These steps are discussed in the following.

At the application level, the coding tool set is finalized at design time and
different application architectural adaptations are performed along with the data
structures and the data flow (see Sect. 4.1 for details). The finalized application
architecture with optimized data flow is implemented. The algorithms for extract-
ing the spatial and temporal video properties are analyzed and a set of algorithms
for important video properties is selected (see Sect. 4.3). Afterwards, the algorithms
for different functional blocks of the video encoder are designed and implemented.

At compile time, the energy consumption analysis of these functional blocks is
performed and the energy consumption is characterized. Depending upon the cho-
sen Motion Estimation algorithm, different patterns and predictor sets are analyzed
and selected before exploring the design space of the Energy-Quality Classes (see
details in Sect. 4.5). A set of common optimal Energy-Quality Classes is obtained
by performing the design space exploration for various test video sequences. Based
on the analysis of the video properties and optimal coding modes for various video
sequences, different Quantization Parameter based threshold equations are formu-
lated (see Sect. 4.3.2). Additionally, low-power Custom Instructions (CIs) and their
composing Data Paths are designed at compile-time (see Sect. 4.2) based on the
modular CI composition model of RISPP [Bau09] and opcodes are assigned to dif-
ferent CIs. Moreover, each CI is implemented using core Instruction Set Architec-
ture (cISA).

3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

www.manaraa.com

61

At run time, the Quantization Parameter based threshold equations are used to
obtain thresholds that are deployed to partition Macroblocks in different categories
with consideration of important Human-Visual System properties (see Sect. 4.3).
The Macroblock categories are used for performing the adaptive complexity reduc-
tion that excludes improbable coding modes from the mode-decision process to
avoid unnecessary energy wastage (see details in Sect. 4.4). Afterwards, the adap-
tive energy-budgeting is performed that provides the predicted energy budget for
the Motion Estimation of one Macroblock. Depending upon the predicted ener-
gy budget an appropriate Energy-Quality Class is selected and the corresponding
configuration is forwarded to the energy-aware Motion Estimation (see details in
Sect. 4.5). After the Motion Estimation is completed, the energy of Energy-Quality
Classes is updated depending upon the current video statistics. For the actual en-
coding, the Quantization Parameter is determined by a multi-level rate control al-
gorithm that allocates a bit budget to the Group of Pictures and then distributes this
budget to different frames within this Group of Pictures. It afterwards determines
the final Quantization Parameter value for each Macroblock inside a frame consid-
ering its spatial and temporal properties (see Appendix A).

3.3 Overview of the Proposed Architectures and Design Steps

Fig. 3.6   Highlighting different steps to be performed at design, compile, and run time at both
application and processor levels

www.manaraa.com

62

At the processor level, first the architectural parameters (i.e., the core proces-
sor, the area of the reconfigurable fabric, connection of the core processor and the
reconfigurable fabric, the data memory connection of CIs, etc.) are determined
at design time. The leakage and dynamic power properties of the core processor
and the reconfigurable fabric are required for designing the power model. As the
power model is based on the actual power measurements, the experimental setup
is designed and the power of various CI Implementation Versions in hardware is
measured (see Chap. 6). The design of the run-time algorithm is also fixed at the
design-time.

At compile time, the power model is formulated and the parameters of the model
are estimated (see Sect. 3.4 and Chap. 6 for details). Furthermore, the key input (i.e.,
the multiple Implementation Versions for each CI with area vs. performance/power
tradeoff) for the run-time algorithms is prepared automatically at compile time.
Note, which Implementation Version for which CI will be used in a given execution
scenario cannot be determined at compile time as it depends upon various unpre-
dictable factors (changing performance constraints, available reconfigurable fabric
area, input data properties, etc.), as discussed in Chap. 1 and Sect. 3.2. However, the
composition of an Implementation Version (i.e., its schedule of Data Path usages)
does not change at run time. Afterwards, the average-case power/energy of each CI
Implementation Version is estimated by considering various placement cases for
different Data Paths of the CI on the reconfigurable fabric (see Sect. 3.4 for the de-
tails on how the placement of a Data Path may affect the power consumption of a CI
Implementation Version). The CI Implementation Versions and their performance,
area, and energy properties are provided to the run-time energy management sys-
tem. These CIs along with the Forecast Instructions (see details in Sect. 2.3.5) are
programmed in the application using inline assembly2.

At run time, an energy minimizing instruction set is chosen depending upon the
monitored CI execution frequency, performance constraint, and the available area
of the reconfigurable fabric (see details in Sect. 5.3). Since the execution frequency
of CIs may change at run time (depending upon the changing control flow or com-
putational properties of an application or changing performance constraints, as ana-
lyzed in Sects. 3.1 and 3.2), the number of actual CI execution is monitored at run
time. After choosing the energy-minimizing instruction set, the temporarily unused
set of the CIs is determined which is the candidate for muting (i.e., power-shut-
down) to reduce the leakage energy. Depending upon the Data Path requirements
of the currently executing and the upcoming computational hot spots, a particular
muting mode is determined for each CI (see details in Sect. 5.4). Afterwards, the
shutdown signals to the corresponding sleep transistors are issued. The Data Paths
of the selected CIs are reconfigured on the fabric. Since the actual placement of
a Data Path of a CI is determined at run time depending upon the reconfiguration
scheduling and replacement (see Sects. 2.3.5 and 3.4), the actual power consump-
tion is estimated at run time.

2  Note, the assembler is extended to identify the CIs and the Forecast Instructions as it needs to
know which instruction format and opcode shall be used for the corresponding CI and Forecast
Instruction.

3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

www.manaraa.com

63

Now, the power model for dynamically reconfigurable processors is presented
which is required for explaining the key contribution of this monograph. Details of
the power measurement setup, steps for creating the power model, and different test
cases to measure the power of individual components will be discussed in Chap. 6.

3.4  �Power Model for Dynamically Reconfigurable
Processors

Diverse efforts have been undertaken in the estimation and modeling of power con-
sumption in FPGAs [AN04; CJMP03; HLLW08; PWY05; Ze07]. The authors in
[HLLW08] presented a technique for rapid estimation of the dynamic power con-
sumption of a hybrid FPGA with coarse-grained and fine-grained units. A dynamic
power estimation model for an FPGA-based soft-core processor has been presented
in [Ze07]. The authors in [AN04; PWY05] presented more detailed power mod-
els for FPGA. An analysis of dynamic power consumption in Virtex-II FPGAs is
presented in [CJMP03]. The authors in [BHU03] presented power estimation and
power consumption for Xilinx Virtex FPGAs, highlighting the tradeoffs between
measured dynamic power and reconfiguration power of different applications.
However, none of them comprehensively covers a highly-adaptive reconfigurable
processor, i.e., an ASIC-based core Instruction Set Architecture (cISA) in conjunc-
tion with an embedded FPGA that supports run-time choices of multiple Implemen-
tation Versions per Custom Instruction (CI).

In this section a comprehensive power model for a dynamically reconfigurable
processor3 considering modular CIs (like the one discussed in Sect. 2.3.5) is pre-
sented. The main challenge is to estimate the power/energy of the modular CIs exe-
cuting on the reconfigurable fabric considering run-time choices of multiple CI Im-
plementation Versions. Before proceeding to the proposed power model, different
power consuming parts of a typical computation- and communication-infrastructure
on a dynamically reconfigurable processor (like in [BSH08a]) will be investigated.

3.4.1  �Power Consuming Parts of a Computation-  
and Communication-Infrastructure in  
a Dynamically Reconfigurable Processor

To estimate the dynamic power consumption of an executing CI ( PCI_dyn), its specific
realization on the reconfigurable fabric (depending on the Implementation Version)
needs to be considered. Figure 3.7 shows an abstract schematic of the hardware
infrastructure for computation and communication (see details in Sect. 2.3.5) that
partitions the reconfigurable fabric into Data Path Containers (DPCs) [BSH08a].

3  An ASIC-based core Instruction Set Architecture with an embedded FPGA.

3.4 Power Model for Dynamically Reconfigurable Processors

www.manaraa.com

64

Each DPC is attached to a Bus Connector with small local storage and connected
to segmented buses.

Figure 3.8 shows the realization of a certain CI Implementation Version using
the hardware infrastructure for the Hadamard Transform (from the H.264 encoder
application) of a 4 × 4 input array that is loaded from the data memory. In addition
to the actual transformation ( Transform Data Path, implementing a butterfly using
eight 8-bit additions along with bit-level rewiring), the CI requires a rearrangement
of the input data and the intermediate results on sub-word level ( Repack Data Path).
The presented Implementation Version in Fig. 3.8 uses two instances of each of the
Transform Data Path and the Repack Data Path, resulting in a CI execution time
of 10 cycles. The CI can also be implemented if only one instance of Transform
and Repack is available (e.g., because the reconfigurations of the other Data Paths
are not yet completed), resulting in a CI execution time of 15 cycles. The fastest
Implementation Version for this CI uses four instances of Transform and Repack
and executes in eight cycles.

Note: different Data Path types typically differ in their required execution energy
(e.g., Repack requires less energy than Transform). Furthermore, the Data Paths
need to communicate, for instance, in Fig. 3.8 the result of Repack in cycle 3 is the
input of Transform in cycle 4. However, the result might not be used immediately,

Fig. 3.7   Power-relevant
components of the computa-
tion- and communication
infrastructure to execute CI
implementation versions

3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

Fig. 3.8   Example for a custom instruction (CI) implementation version

www.manaraa.com

65

for instance, the result of Transform in cycle 5 is only required two cycles later, so
it needs to be temporarily stored.

Summarizing:  to determine the dynamic power consumption of a CI Implementa-
tion Version execution, the following needs to be considered:

•	 The types of Data Paths and how often they are executed.
•	 The number of write/read accesses on the local storage.
•	 The number of bus segments necessary for communicating the intermediate re-

sults. This value depends on the relative placement of the communicating Data
Paths on the reconfigurable fabric.

Typically, the computation and communication activities during the execution of an
Implementation Version vary per cycle: in cycle 3, for instance (see Fig. 3.8), two
Repack Data Paths are demanded whereas in cycle 5 two Transform Data Paths are
necessary (similar differences exist for the local storages and the bus lines). Now,
the details of the proposed power model are presented in the following.

3.4.2  �The Proposed Power Model

The power of a dynamically reconfigurable processor consists of the following
components:

�
(3.1)

3.4.2.1  �Dynamic Power When Executing a Custom  
Instruction (CI)

To study the effect of different constituting parameters on the power of a CI Im-
plementation Version, various measurements using an in-house developed FPGA
prototyping platform (see Chap. 6 for details) are conducted. As discussed above,
the total dynamic power consumption of a CI Implementation Version (see Eq. 3.2)
comprises the power of computing Data Paths ( PDataPath), communicating bus seg-
ments ( PSegBus), and read/write from the local storage ( PMemory). Considering these
parameters, the dynamic power of a CI Implementation Version ( PCI_dyn) is modeled
as:

� (3.2)

On FPGA running at frequency ‘F’, the energy consumption of an Implementation
Version with a latency of ‘L’ cycles is calculated as: ECI_dyn = PCI_dyn *(L/F) . α,
β, γ, δ are the model coefficients (see details in Sect. 6.2). δ accounts for the mea-
surement noise. PDataPath, PSegBus, and PMemory are explained as below:

PReconfProc = PCI_dyn +
∑

PDPC_leak +
∑

PDPC_reconf + PcISA_dyn + PcISA_leak

PCI_dyn = α *PDataPath + β *PSegBus + γ *PMemory + δ

3.4 Power Model for Dynamically Reconfigurable Processors

www.manaraa.com

66

Data Path Power  (PDataPath =
(
�n

i=1NiPDataPath_i

)
/L): the average power of Data

Paths (for an Implementation Version with a latency of L cycles) depends upon the
types of Data Paths and how often they are executed. Ni is the number of cycles for
which the ith Data Path type is used to realize the Implementation Version. Due to
their distinct processing nature, different Data Path types generally differ in their
power consumption PDataPath_i (see Sect. 6.2.3 for the measured power results).

Bus Power  (PSegBus = BusSegavg * Pbus): Data Paths communicate with each other
over segmented buses (see Figs. 3.7 and 3.8). The number of bus segments required
for communicating the intermediate results depends on the relative position of the
communicating Data Paths on the reconfigurable fabric. BusSegavg is the average
number of bus segments employed per cycle and Pbus is the average power con-
sumption of one bus segment.

Memory Power  (PMemory = Memavg * PRW): The output of a Data Path is temporarily
stored in the local memory of the Bus Connector (see Fig. 3.7). Memavg is the aver-
age number of local memory accesses (read or write) per cycle and PRW is the power
consumption of a single read or write operation.

PDataPath_i, Pbus, and PRW are the measured values (see Chap. 6), while the values
of Ni, BusSegavg, and Memavg depend upon a particular CI Implementation Version.

3.4.2.2  �Leakage Power of Data Path Containers (DPCs)

PDPC_leak denotes the leakage power of a DPC. Each DPC is treated as a group of
Configurable Logic Blocks (CLBs) that are powered-off with sleep transistors (pow-
er-shutdown infrastructure will be discussed in Sect. 5.2.2). The power shutdown
decision depends upon the temporarily unused set of CIs (see details in Chap. 5).

3.4.2.3  �Reconfiguration Power

PDPC_reconf represents the power when reconfiguring a DPC (i.e., a Data Path is load-
ed onto a DPC). Differently sized Data Paths may require different reconfiguration
time due to their varying bitstream lengths. The reconfiguration energy is given
by: EDPC_reconf  = Treconf * PDPC_reconf. The procedure for measuring the reconfiguration
power will be discussed in Sect. 6.3.

3.4.2.4  �Dynamic and Leakage Power of the core Instruction  
Set Architecture (cISA)

PcISA_dyn and PcISA_leak denote the dynamic and leakage power consumption of the so-
called core Instruction Set Architecture (cISA), respectively. A five-stage pipeline

3 Adaptive Low-Power Architectures for Embedded Multimedia Systems

www.manaraa.com

67

processor Leon2 with a SPARC V8 instruction set is used in the current prototype
platform as the cISA.

3.5  �Summary of Adaptive Low-Power Embedded
Multimedia System

This chapter has analyzed different issues related to the energy consumption and
adaptivity of an advanced H.264/AVC video encoder in a video conferencing ap-
plication from both application and processor architecture perspectives. It was
identified that the H.264/AVC video codec requires more than 70% of the total
computational load and energy consumption of a video conferencing application.
Since most of the advanced video encoders share a similar computational model
and tool set as of the H.264/AVC encoder, it was selected as the target multimedia
application in this monograph. Afterwards, the energy and adaptivity related issues
in the H.264/AVC application were analyzed. It was found that Mode Decision
and Motion Estimation are the most critical components of a video encoder. More-
over, different run-time varying constraints were mentioned. Afterwards, consider-
ing the application-level unpredictability, other adaptivity and energy related issues
were explored for the dynamically reconfigurable processors. After the analysis,
an overview of the proposed processor and application architectures is presented
along with the design-, compile-, and run-time steps. At the end, a novel power
model for dynamically reconfigurable processors is proposed. This power model
considers different types of Data Paths, their placement on the fabric, and memory
accesses to estimate the power of Custom Instructions with various Implementa-
tion Versions. Moreover, this model considers the leakage and dynamic power of
the core processor and the reconfigurable fabric along with the power consumed
by the reconfiguration process. The details of the power measurements and model
generation methodology will be discussed in Chap. 6. This power model is later on
used for energy estimation and run-time energy management at both application and
processor architecture levels.

3.5 Summary of Adaptive Low-Power Embedded Multimedia System

www.manaraa.com

69

This chapter presents the novel adaptive low-power application architecture
of advanced H.264 video encoder. It employs an adaptive complexity reduction
scheme and an energy-aware Motion Estimation scheme using the novel concept of
Energy-Quality Classes to realize adaptive low-power video encoding.

Section 4.1 presents the H.264 encoder application architectural adaptations for
reconfigurable processors. First the basic application architectural adaptations are
performed (Sect. 4.1.1) for improving the data flow and data structures. Afterwards,
adaptations for reduced computations and reduced hardware pressure are discussed
in Sects. 4.1.2 and 4.1.3, respectively. The detailed data flow for the optimized
application architecture is discussed in Sect. 4.1.4. The design of low-power Cus-
tom Instructions and Data Paths is discussed in Sect. 4.2. The analysis of spatial
temporal video properties is explained in Sect. 4.3. Based on this analysis and rel-
evant Human Visual System properties, Macroblock categorization is performed
(Sect. 4.3.1) which employs Quantization Parameter based thresholding in order
to react to the changing bit rate scenarios (Sect. 4.3.2). This analysis is used by
the adaptive computational complexity reduction scheme (Sect. 4.4) to remove the
improbable coding modes from the candidate mode set. Section 4.5 presents the
energy-aware Motion Estimation scheme. First an adaptive Motion Estimator with
multiple processing stages is proposed in Sect. 4.5.1. Afterwards, Sect. 4.5.2 dis-
cusses how an energy budget is computed for different Macroblocks and how the
Energy-Quality Classes are designed and deployed.

4.1  �H.264 Encoder Application Architectural Adaptations
for Reconfigurable Processors

4.1.1  �Basic Application Architectural Adaptations

The JM software of the H.264/AVC video encoder [JVT10] contains a large set of
tools to support a variety of applications (video conferencing to HDTV) and uses
complex data structures to facilitate all these tools. For that reason, the reference

Chapter 4
Adaptive Low-Power Video Coding

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3_4, © Springer Science+Business Media LLC 2011

www.manaraa.com

70

software is not a suitable base for research and development of a low-power video
encoder.

Therefore, the application architecture of the JM software [JVT10] is passed
through a series of following basic application architectural adaptations in order
to obtain a good starting point, i.e., a so-called H.264 encoder Benchmark Appli-
cation. This Benchmark Application provide a foundation for researching the ap-
plication architectural adaptations amenable to the reconfigurable processors. The
details of these basic application architectural adaptations are as follows:

1.	 First, the reference software is adapted to contain only Baseline-Profile tools
(Fig. 4.1a) considering multimedia applications executing on mobile devices. The
Baseline-Profile is further truncated/curtailed by excluding Flexible Macroblock
Ordering (FMO) and multiple slice (i.e., complete video frame is one slice).

2.	 Afterwards, the data structure of this application is improved by replacing, for
example, multi-dimensional arrays with one-dimensional arrays to improve the
memory accesses (Fig. 4.1b). The basic data flow of the application is addition-
ally improved and the inner loops are unrolled to enhance the compiler optimiza-
tion space and to reduce the amount of jumps.

Fig. 4.1   Basic application architectural adaptations to construct the benchmark application.
a Adapting reference software. b Improving data structure. c Profiling and Designing Custom
Instructions

4 Adaptive Low-Power Video Coding

www.manaraa.com

71

3.	 The reference software uses a Full Search Motion Estimator which is not prac-
ticable in real-world applications and it is only used for quality comparison.
Therefore, real-world applications necessitate a low-complexity Motion Estima-
tor. A low-complexity fast and adaptive Motion Estimator called UMHexagonS
[CZH02] was used to reduce the processing loads of ME process while keeping
the visual quality closer to that of Full Search. Full Search requires on average
107811 SADs/frame for Carphone QCIF video sequence (256 kbps, 16 Search
Range and 16 × 16 Mode). On the contrary, UMHexagonS requires on average
4424 SADs/frame. Note, UMHexagonS will also be used as a competitor for the
proposed energy-aware Motion Estimation scheme in Sect. 4.5 (p. 104).

4.	 Afterwards, this application is profiled to detect the computational hot spots
(Fig. 4.1c). Several modular Custom Instructions (CIs, according the CI model
of RISPP as discussed in Sect. 2.3.5) along with their composing low-power
Data Paths (i.e., elementary hardware accelerators) are designed and imple-
mented to expedite the hot spots of the H.264 encoder (see details in Sect. 4.2,
p. 80). This adapted and optimized application then serves as the Benchmark
Application for further architectural adaptations that are amenable to the recon-
figurable processors.

Figure 4.2 shows overview of the hot spots (with various functional blocks) in the
Benchmark Application. It consists of three main hot spots:

•	 Interpolation for Motion Compensation: An upscaled frame with half-pixel
and quarter-pixel values is generated using a six-tap filter and a bilinear filter
(see details in [ITU05]). This interpolated frame is then used in the Motion Com-
pensation process. Note, the interpolated data may be used by the Motion Esti-
mation process, however, it is not fixed by the standard.

•	 Macroblocks (MB) Encoding Loop: the main loop for encoding an MB. It
consists of:

−	 Motion Estimation (ME) using Sum of Absolute Differences (SAD) and Sum
of Absolute Transformed Differences (SATD)

−	 Motion Compensation (MC)
−	 Intra Prediction (IPred)

4.1 H.264 Encoder Application Architectural Adaptations for Reconfigurable Processors

Fig. 4.2   Arrangement of
functional blocks in the
H.264 encoder benchmark
application

ME
SA(T)D

Pick MC
Data

DCT / Q

IPred
DCT /
HT / Q

RDO-MD

IDCT /
IHT / IQ

CAVLC

L
o

o
p

O
ve

r
M

B

MB Encoding
Loop

In
-L

o
o

p
D

eb
lo

ck
in

g
 F

ilt
er

L
o

o
p

 O
ve

r
M

B

In
te

rp
o

la
ti

o
n

s
fo

r
M

C
(A

ll
15

 c
as

es
)

L
o

o
p

 O
ve

r
M

B

ME Motion Estimation
MC Motion Compensation

(I)DCT (Inverse) Discrete Cosine Transform

(I)HT (Inverse) Hadamard Transform

(I)Q (Inverse) Quantization

RDO-MD Rate-Distortion
Optimized Mode
Decision

IPred Intra Prediction
CAVLC Context-Adaptive VLC

MB Macroblock

www.manaraa.com

72

−	 Rate Distortion Optimized Mode Decision (RDO-MD)
−	 Discrete Cosine Transform (DCT) and Inverse Discrete Cosine Transform

(IDCT)
−	 Hadamard Transform (HT) and Inverse Hadamard Transform (IHT)
−	 Quantization (Q) and Inverse Quantization (IQ)
−	 Context Adaptive Variable Length Coding (CAVLC)

•	 In-Loop Deblocking Filter: the filter for removing the blocking artifacts.

These functional blocks operate at the MB-level where an MB can be of type Intra
(I-MB: uses IPred for the spatial prediction) or Inter (P-MB: uses MC for the tem-
poral prediction).

4.1.2  �Application Architectural Adaptations for  
On-Demand Interpolation

Figure 4.3 shows a statistical study on different mobile video sequences with low-
to-medium motion considering the fact that the H.264 encoder Benchmark Applica-
tion interpolates MBs before entering the main MB Encoding Loop (see Fig. 4.2).
It is noticed that in each frame the number of MBs for which an interpolation was
actually required to process MC is much less than the number of MBs processed for
interpolation by the Benchmark Application. After analysis, it was found that the
significant gap between the processed and the actually required interpolations is due
to the stationary background, i.e., the motion vector (which determines the need for

Fig. 4.3   Number of computed vs. required interpolated MBs for two standard test sequences for
mobile devices

4 Adaptive Low-Power Video Coding

www.manaraa.com

73

interpolations) is zero. The interpolation is only required for MBs with motion vec-
tors (given by the ME) with fractional-pixel accuracy. Additionally, even for those
MBs that require an interpolation, only one of the 15 possible interpolation cases is
actually required (indeed one interpolation case is needed per Block, potentially a
sub-part of a MB), which shows the enormous saving potential. The last two bits of
the motion vector hereby determine the required interpolation case.

Figure 4.4 shows the distribution of interpolation cases in the ‘Carphone’ se-
quence (a standard videophone test sequence with the highest interpolation com-
putation load in the QCIF test-suite). Figure 4.4 demonstrates that in total 48.78%
of the total MBs require one of these interpolation cases (C-1 to C-15). The case
C-16 is for those MBs where the last two bits of the motion vector are zero (i.e.,
integer pixel resolution or stationary) such that no interpolation is required. The
I-MBs (for Intra Prediction) actually do not require an interpolation either. One of
main challenges is to eradicate this problem by shifting the process of interpolation
after the ME computation. This enables to determine and process only the required
interpolations, i.e., so-called on-demand interpolation. Figure 4.5 shows the appli-
cation architectural adaptation to reduce the overhead of excessive interpolations.
After performing the ME, the motion vector is obtained, which allows to perform
only the required interpolation. The Fractional-pixel ME might additionally require
interpolations, but it is avoided in most of the cases (C-16) due to the stationary
nature of these MBs. The proposed application architecture maintains the flexibility
for the designer to choose any low-complexity interpolation scheme for Fractional-
pixel ME, e.g., [SJ04].

One of the side effects of shifting the interpolation after ME is that it increases
the number of functional blocks inside the MB Encoding Loop. It is noted that—be-
sides the interpolation—there are already several functional blocks inside the MB
Encoding Loop (Fig. 4.2). As discussed in Sect. 2.3, due to the significant reconfig-
uration time, the fabric in the reconfigurable processors is not reconfigured between
the processing of a hot spot, i.e., within processing of each MB. Therefore, not all
Data Paths of the CIs in the MB Encoding Loop may be supported in the available
reconfigurable fabric (depending upon its size). The bigger number of Data Paths
required to expedite a computational hot spot corresponds to a high hardware pres-
sure inside this hot spot (i.e., a large-sized reconfigurable fabric has to be provided
to expedite the hot spot). A higher hardware pressure results in:

4.1 H.264 Encoder Application Architectural Adaptations for Reconfigurable Processors

Fig. 4.4   Distribution of dif-
ferent interpolation cases in
the carphone video sequence

49.2

2.03.74.03.73.32.61.82.31.7
5.44.94.03.32.13.32.6

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

C
-1

C
-2

C
-3

C
-4

C
-5

C
-6

C
-7

C
-8

C
-9

C
-1

0

C
-1

1

C
-1

2

C
-1

3

C
-1

4

C
-1

5

C
-1

6

I M
B

C-1: ½x, y
C-2: x, ½y
C-3: ½x, ½y
C-4: ¼x, y
C-5: ¾x, y
C-6: x, ¼y

C-7: x, ¾y
C-8: ¼x, ½y
C-9: ¾x, ½y
C-10: ½x, ¼y
C-11: ½x, ¾y
C-12: ¼x, ¼y

C-13: ¼x, ¾y
C-14: ¾x, ¼y
C-15: ¾x, ¾y
C-16: x, y (no

interpolation
required)

www.manaraa.com

74 4 Adaptive Low-Power Video Coding

Fig. 4.5   H.264 encoder application architecture with reduced hardware pressure

www.manaraa.com

75

•	 more Data Paths that might be required (for meeting the performance constraint)
within a hot spot than actually fit into the reconfigurable fabric. Therefore, not all
hot spots might be expedited and the CIs are executed using the Core Instruction
Set Architecture (cISA) instead, and

•	 increased reconfiguration overhead (latency, energy), as the reconfiguration time
depends on the amount of fabric that needs to be reconfigured.

Both points lead to performance degradations for the reconfigurable processors,
depending on the magnitude of hardware pressure. This is a drawback for the class
of reconfigurable processors and therefore further application architectural adapta-
tions are required to counter this drawback. In the following, the application archi-
tectural adaptations to reduce the hardware pressure inside the MB Encoding Loop
are proposed that introduce the concept of decoupling the Motion Estimation and
Rate Distortion Optimized Mode Decision from the main MB Encoding Loop.

4.1.3  �Application Architectural Adaptations for Reducing  
the Hardware Pressure

Although the application architectural adaptation for on-demand interpolation
(Sect. 4.1.2) results in a significant reduction of performed interpolations, it further
increases the hardware pressure of the MB Encoding Loop, as the hardware for the
Motion Compensated Interpolation is now shifted inside this loop. A higher hard-
ware pressure has a negative impact when the encoder application is executed on
a reconfigurable processor. This is due to the fact that the amount of hardware re-
quired to expedite the MB Encoding Loop (i.e., the hardware pressure) is increased
and not all Data Paths can be accommodated in the available reconfigurable fabric.
Moreover, it takes longer until the reconfiguration is completed and the hardware
is ready to execute. Therefore, in order to reduce the hardware pressure those func-
tional blocks are decoupled that may be processed independent of rest of the encod-
ing process. Decoupling of these functional blocks is performed with the surety that
the encoding process does not deviate from the standard specification and a stan-
dard compliant bitstream is generated. Motion Estimation (ME) and Rate Distortion
Optimized Mode Decision (RDO-MD) are decoupled as they are non-normative
and standard does not fix their implementation. However, this decoupling of func-
tional blocks affects the data flow of application (discussed in detail in Sect. 4.1.4).

As ME does not depend upon the reconstructed path of encoder, ME can be
processed independently on the whole frame. Therefore, it is taken out of the MB
Encoding Loop (as shown in Fig. 4.5) which will decouple the hardware for both
Integer- and Fractional-pixel ME. Moreover, it is also worthy to note that some
accelerating Data Paths of SATD (i.e QSub, Repack, Transform) are shared by (I)
DCT, (I)HT_4 × 4, and (I)HT_2 × 2 Custom Instructions (see Table 4.1 in Sect. 4.2).
Therefore, after the ME is completed for one frame and the subsequent MB Encod-
ing Loop is started, these reusable Data Paths are already available which reduces

4.1 H.264 Encoder Application Architectural Adaptations for Reconfigurable Processors

www.manaraa.com

76

the reconfiguration overhead (latency and energy). As motion vectors are already
stored in a full-frame based memory data structure, no additional memory is re-
quired when ME is decoupled from the MB Encoding Loop. Decoupling ME will
also improve the instruction cache usage as same instructions are now processed for
long time in one loop. A much better data-arrangement (depending upon the search
patterns) can be performed to improve the data cache usage (i.e., reduced number of
misses) when processing ME on frame-level due to the increased chances of avail-
ability of data in the cache. However, when ME executes inside the MB Encoding
Loop these data-arrangement techniques may not help. This is because subsequent
functional blocks (MC, DCT, CAVLC etc.) typically replace the data that might be
beneficial for the next execution of ME.

The RDO-MD controls the encoded quality by deciding about the type of an MB
(I-MB or P-MB). Furthermore, the I-MB/P-MB Mode Decision is also attached
with this as an additional RD decision layer. The H.264 Benchmark Application
employs an exhaustive RDO-MD scheme that computes both I- and P-MB encod-
ing flows with all possible modes and then chooses the one with the best tradeoff
between the required bits to encode the MB and the distortion (i.e., video quality)
using a Lagrange Scheme, according to an adjustable optimization goal (see details
in Sects. 2.2.3 and 4.4). The RDO-MD is additionally taken out of the MB Encoding
Loop (see Fig. 4.5) to perform an early decision on MB type (I or P) and Mode (for I
or P). This will further reduce the hardware pressure in the MB Encoding Loop and
the total processing load (either I or P computation instead of both). Shifting RD is

4 Adaptive Low-Power Video Coding

Table 4.1   Custom instructions and data paths for the H.264 video encoder
Functional
component

Custom
instruction

Description of custom instructions Accelerating data
paths

Motion Estima-
tion (ME)

SAD16 × 16 Sum of Absolute Differences
of a 16 × 16 Macroblock

SADrow

SATD4 × 4 Sum of Absolute (Hadamard-)
Transformed Differences of a
4 × 4 sub-block

QuadSub, Trans-
form, Repack,
SAV

Motion Compen-
sation (MC)

MC_Hz_4 Motion Compensated Interpolation
for Horizontal case for 4 Pixels

PointFilter, Repack,
Clip3

Intra Prediction
(IPred)

IPred_HDC 16 × 16 Intra Prediction for Horizon-
tal and DC

CollapseAdd,
Repack

IPred_VDC 16 × 16 Intra Prediction for Vertical
and DC

CollapseAdd,
Repack

(Inverse)
Transform

(I)DCT4 × 4 Residue calculation and (Inverse)
Discrete Cosine Transform for
4 × 4 sub-block

Transform, Repack,
(QuadSub)

(I)HT_2 × 2 2 × 2 (Inverse) Hadamard Transform
of Chroma DC coefficients

Transform

(I)HT_4 × 4 4 × 4 (Inverse) Hadamard Transform
of Intra DC coefficients

Transform, Repack

In-loop Deblock-
ing Filter (LF)

LF_BS4 4-Pixel Edge Filtering for in-loop
Deblocking Filter with Boundary

Strength 4

Cond, LF_4

www.manaraa.com

77

less efficient in terms of bits/MB as compared to the exhaustive RDO-MD scheme
as the latter checks all possible combinations to make a decision. However, RD
outside the MB Encoding Loop is capable to utilize intelligent schemes to achieve
a near-optimal solution, for instance, Inter-Modes can be predicted using homoge-
neous regions and edge map (see details in Sect. 4.4).

The H.264 encoder application architecture with reduced hardware pressure pro-
vides a good arrangement of processing functions that facilitates an efficient data
flow. For multimedia applications, data format/structure and data flow are very im-
portant as they greatly influence the resulting performance. Therefore, the complete
data flow of the encoder will be discussed along with the impact of the proposed
application architectural adaptations.

4.1.4  �Data Flow of the H.264 Encoder Application  
Architecture with Reduced Hardware Pressure

Figure 4.6 shows the data flow diagram of the H.264 application architecture with
reduced hardware pressure. The boxes show the process (i.e., the processing func-
tion of the encoder) and arrows represent the direction of the flow of data structure
(i.e., text on these arrows). D1 and D2 are two data stores that contain the data struc-
tures for current and previous frames. E1 and E2 are two external entities to store
the coding configuration and encoded bitstream, respectively. The format of these
data structures is shown in Fig. 4.7 along with a short description.

Motion Estimation (1.0, 1.1) takes Quantization Parameter from the Rate Con-
troller (11.0) and Luma components of current and previous frames (CurrY, PrevY)
from the two data stores D1 and D2 as input. It forwards the result (i.e., MV and
SAD arrays) to the RDO-MD process (1.2) that selects the type of an MB and
its expected coding mode. If the selected type of MB is Intra then the mode in-
formation (IMode) is forwarded to the Intra Prediction (2.1) block that computes
the prediction using the reconstructed pixels of the neighboring MBs in the cur-
rent frame (CurrYUV), otherwise PMode is forwarded to the Motion Compensa-
tion (2.0) that computes the prediction using previous frame (PrevYUV) and MV.
The three transform processes (3.0–3.2) calculate the residue from using Luma and
Chroma prediction results (PredYUV) and current frame data (CurrYUV) that is
then transformed using 4 × 4 DCT. In case of Intra Luma 16 × 16 the 16 DC coef-
ficients (TYDC Coeff) are further transformed using 4 × 4 Hadamard Transform
(6.0) while in case of Chroma 4 DC coefficients (TUVDC Coeff) are passed to 2 × 2
Hadamard Transform process (5.0). All the transformed coefficients (TCoeff, HTU-
VDC Coeff, HTYDC Coeff) are then quantized (4.0, 5.1, 6.1). The quantized result
(QCoeff, QYDC Coeff, QUVDC Coeff) is forwarded to CAVLC (9.0) and to the
reconstructed/backward path, i.e., inverse quantization (6.3, 5.2, 4.1), inverse trans-
form (6.2, 5.3, 7.0–7.2), and reconstruction (8.0). The reconstructed frame is then
processed with in-loop Deblocking Filter (10.0) while the output of CAVLC (i.e.,
bitstream) is stored in the Bitstream Storage (E1). Depending upon the achieved

4.1 H.264 Encoder Application Architectural Adaptations for Reconfigurable Processors

www.manaraa.com

78

bit rate and coding configuration (E2) the Rate Controller (11.0) decides about the
Quantization Parameter.

After the proposed adaptation, the size of data structure for interpolation result
is much smaller than before adaptation. The new PredYUV (Fig. 4.7) data struc-
ture requires only 384 bytes ((256 + 128)*8-bits) for CIF videos, as the prediction
result for only one MB is required to be stored. On the contrary, pre-computing all
interpolated pixels up to quarter-pixel resolution instead requires a big data struc-
ture ( 16*Frame_Size bytes) storage after interpolation and loading for residual cal-
culation. For Quarter Common Intermediate Format (QCIF, 176 × 144) and Com-

Fig. 4.6   Data flow diagram of the H.264 encoder application architecture with reduced hardware
pressure

4 Adaptive Low-Power Video Coding

www.manaraa.com

79

mon Intermediate Format (CIF, 352 × 288) resolutions, this corresponds to a 1584
(176*144*16/256) and 6336 (352*288*16/256) times bigger memory consump-
tion, respectively, compared to the proposed on-demand interpolation.

Pre-computing all interpolation cases results in non-contiguous memory access-
es. The interpolated frame is stored in one big memory, i.e., interpolated pixels are
placed in between the integer pixel location. Due to this reason, when a particular
interpolation case is called for Motion Compensation, the access to the pixels cor-
responding to this interpolation case is in a non-contiguous fashion (i.e., one 32-bit
load will only give one useful 8-bit pixel value). This will ultimately lead to data
cache misses as the data cache will soon be filled with the interpolated frame, i.e.,
including those values that were not required. Contrarily, the on-demand interpola-
tion stores the interpolated pixels in an intermediate temporary storage using a con-
tiguous fashion such that, four interpolated pixels of a particular interpolation case
are stored contiguously in one 32-bit register. This improves the overall memory
access behavior. Adaptations in the application architecture change the data flow
from one processing function to the other. As the looping mechanism is changed,
the data flow is changed. On the one hand, performing on-demand interpolation
increases the probability of instruction cache miss. On the other hand, it improves

Fig. 4.7   Description and organization of major data structures

Row 1 1 pixel = 8 Bytes

352x288

CurrY
PrevY

Data Structures (all 1-D Arrays) for Encoding CIF YUV 4:2:0 Video Sequences
[CIF: 288 Rows, each of 352 Pixels i.e. 396 MBs]

176x144

CurrU, V
PrevU,V

x y x y x y

1 MB MV[x,y] 16-bit x 16

396x16x32-bit

MV, SAD
(Curr, Prev)

396x32-bit

1 MB SAD 32-bit

396x8-bit

1 MB QP 8-bit

MBType,
QP

396x8-bit

1 MBType 8-bit

PMode,
IMode

396x8-bit

1 PMode 8-bit

396x8-bit

1 IMode 8-bit

(256+128)x16-bit

1 Coefficient is 16-bit

(I)TCoeff,
(I)QCoeff

TYDC Coeff
(I)HTYDC Coeff
(I)QYDC Coeff 16x16-bit

Each 16-bit

TUVDC Coeff
(I)HTUVDC Coeff
(I)QUVDC Coeff 64-bit

CurrYUV,
PrevYUV

Description of Data Structures

Luma and Chroma Components of
Current and Previous Frames

Pred YUV Luma and Chroma Components of
Prediction Data for 1 MB

(I)TCoeff,
(I)QCoeff

TYDC Coeff
(I)HTYDC Coeff
(I)QYDC Coeff

TUVDC Coeff
(I)HTUVDC Coeff
(I)QUVDC Coeff

MBType

QP

Type of Macroblock (I or P)

PMode
IMode

Mode of P-MB (e.g.16x16 or 8x8)
Mode of I-MB (16x16 or 4x4)

Quantization ParameterMV, SAD Motion Vector and SAD Arrays

(Inverse) Transformed Coefficients
(Inverse) Quantized Coefficients

DCT Transformed DC Coefficients for
Intra Luma 16x16, (Inverse) Hadamard

4x4 Transformed and (Inverse) Quantized

DCT Transformed DC Coefficients for
Chroma, (Inverse) Hadamard 2x2

Transformed and (Inverse) Quantized

PredYUV

(256+128)x8-bit

1 Predictor = 8-bit

4.1 H.264 Encoder Application Architectural Adaptations for Reconfigurable Processors

www.manaraa.com

80

the data cache by offering a smooth data flow between prediction calculation and
transform process, i.e., it improves the data flow as it directly forwards the interpo-
lated result for residual calculation and then to DCT. Pre-computation is beneficial
in-terms of instruction cache as it processes a similar set of instructions in one loop
over all MBs. Conversely, on-demand interpolation is beneficial in-terms of data-
cache which is more critical for data intensive applications (e.g., video encoders).

For reduced hardware pressure optimization, the Motion Estimation process is
decoupled from the main MB Encoding Loop. Since now Motion Estimation ex-
ecutes in a one big loop, the instruction cache behavior is improved. The rectangu-
lar region in Fig. 4.6 shows the surrounded data structures whose flow is affected
by this optimization of reduced hardware pressure. Before optimizing for reduced
hardware pressure, Motion Estimation was processed on MB-level, therefore MV
and SAD arrays were passed to the Motion Compensation process in each loop
iteration. Since the encoder uses MVs of the spatially neighboring MBs for Mo-
tion Estimation, the data structure provides the storage for MVs of complete video
frame (e.g., 396*32-bits for a CIF frame). After optimizing for reduced hardware
pressure, there is no change in the size of MV and SAD data structures. The MV
and SAD arrays of the complete video frame are forwarded just once to the Motion
Compensation process.

Additionally, now RDO-MD can be performed by analyzing the neighboring
MVs and SADs. The type of MB and its prediction mode is stored at frame-level
and is passed to the prediction processes. Without the proposed adaptations (i.e.,
when processing Motion Estimation and RDO-MD at MB-level), fast Mode Deci-
sion schemes cannot use the information of MVs and SADs of the spatially next
MBs. On the contrary, the proposed application architecture facilitates much intelli-
gent RDO-MD schemes where modes can be predicted using the motion properties
of spatially next MBs, too (see Sect. 4.4).

Summarizing:  the proposed application architectural adaptations not only save the
excessive computations (thus energy) using on-demand interpolation for Motion
Compensation and relax the hardware pressure in case of reconfigurable processors
by decoupling the Motion Estimation and RDO-MD processes but also improves
the data flows and instruction cache behavior.

4.2  �Designing Low-Power Data Paths and Custom
Instructions

For accelerating the hot spots of H.264 encoder application, various modular Cus-
tom Instructions (CIs) were designed and implemented. Table 4.1 gives the descrip-
tion of the implemented CIs of the H.264 video encoder. It is noticeable that some
Data Paths (especially Repack and Transform) are used to implement different CI
types. The measured and estimated power values for these CIs and the Data Paths
are provided in Sect. 6.2.3.

4 Adaptive Low-Power Video Coding

www.manaraa.com

81

To design CIs, the constraints imposed by the architecture need to be considered
(as discussed in Sects. 2.3.3 and 2.3.5). A typical Data Path has two 32-bit input,
two 32-bit output, an 8-bit control signal, a clock, and a reset signal. Moreover the
size of an Data Path is limited to approximately 500 Slices to ensure that it will fit in
the so-called Data Path Containers (DPC). Additionally, there are special Data Paths
containing four inputs and four outputs which are reserved for most commonly
used functions (e.g., packing, adding values, re-arranging data). To receive the data
needed from memory, two 128-bit Load/Store Units are available.

Different optimizations are performed to reduce the number of operations in a
Data Path that directly results in area and power reduction. Figure 4.8 presents the
steps to create optimized Data Paths from the formulae specified in H.264 stan-
dard [ITU05]. First, the standard formulae are transformed into pixel processing
equations that are then processed for architecture-independent optimizations under
a given set of optimization rules and constraints. A set of unique equations is ex-
tracted followed by optimizations at multiple levels to enhance the level of opera-
tion reusability. A set of architectural constraints (as discussed above) is considered
to perform hardware level optimizations resulting in a low power Data Path. In the
following sections, the design of important CIs from H.264 encoder and their com-
posing Data Paths is described. The design for the Deblocking Filter CI in detail
along with the proposed optimizations.

4.2.1  �Designing the Custom Instruction for In-Loop  
Deblocking Filter

The H.264 codec employs an in-loop adaptive Deblocking Filter (after the recon-
struction stage) for removing the blocking artifacts at 4 × 4 sub-block boundaries.
The filtered image is used for motion-compensated prediction of future frames.
Each boundary of a 4 × 4 sub-block is called one 4-pixel edge onwards as shown in
Fig. 4.9. Each Macroblock (MB) has 48 (32 for Luma and 16 for Chroma) 4-pixel
edges. The standard specific details of the filtering operation can be found in [ITU05].

Algorithm 4.1 shows the filtering conditions and filtering equations for Bound-
ary Strength = 4 (as specified in [ITU05]) where pi and qi (i = 0, 1, 2, 3) are the pixel
values across the block horizontal or vertical boundary as shown in Fig. 4.10.

4.2 Designing Low-Power Data Paths and Custom Instructions

Fig. 4.8   Steps to create optimized data paths from the standard formulae

Standard
Formulae

Equation
Formulation

Architecture
Independent
Optimizations

Hardware
Specific

Optimizations

Optimized
Data Paths

Optimization
Rules

– Level of Parallelism
– Pixel-level (4 or 16)
– Picture-Component-Level (Luma and Chroma)

– Bandwidth of the Load/Store unit, Number of
Read/Write Ports, area constraint

– Power-/Clock-Gating/Operand Isolation

Unique Equations
Extraction

www.manaraa.com

82

Figure 4.11a shows the Deblocking Filter CI (named LF_BS4, Table 4.1) that
targets the processing flow of Algorithm 4.1. This LF_BS4 CI filters one four-pixel
edge, which corresponds to the filtering of four rows each with 8 pixels. The LF_BS4

Fig. 4.9   4-Pixel edges in one macroblock

p3 p2 p1 p0 q0 q1 q2 q3P Q

4 Adaptive Low-Power Video Coding

LUMA (32 4-pixel edges)

CHROMA (2*8=16 4-pixel edges)

4x4 sub-block

Block Edge
(16-pixels)

A Block Edge spans
the complete 16-pixel
boundary in an MB

4-pixel edge is a
part of the Block
Edge considering
4x4 sub-blocks

4-pixel edge

Fig. 4.10   Pixel samples across a 4 × 4 block horizontal or vertical boundary

Algorithm 4.1   The Filtering Process for Boundary Strength=4

Compute Filtering Conditions and Filtered Pixels for Boundary Strength=4
1.	 IF (abs(q0–p0) < α) THEN
2.		 IF (abs(q0-q1) < β) & (abs(p0-p1) < β) THEN
3.			 IF (chromaEdgeFlag==0) THEN
4.				 aq = abs(q0-q2) < β;	ap = abs(p0-p2) < β;
5.			 END IF
6.			 IF (Boundary_Strength==4) THEN
7.				� IF (chromaEdgeFlag==0)&(ap < β && Abs(p0 – q0) < ((α >> 2) + 2)) THEN
8.					 p'0 = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3;
9.					 p'1 = (p2 + p1 + p0 + q0 + 2) >> 2;
10.					 p'2 = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3;
11.				 ELSE
12.					 p'0 = (2*p1 + p0 + q1 + 2) >> 2;	 p'1 = p1;		 p'2 = p2;
13.				 END IF
14.	�			 IF (chromaEdgeFlag==0)&(aq < β && Abs(p0 – q0) < ((α >> 2) + 2)) THEN
15.					 q'0 = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3;
16.					 q'1 = (p0 + q0 + q1 + q2 + 2) >> 2;
17.					 q'2 = (2*q3 + 3*q2 + q1 + q0 + p0 + 4) >> 3;
18.				 ELSE
19.					 q'0 = (2*q1 + q0 + p1 + 2) >> 2;	 q'1 = q1;		 q'2 = q2;
20.				 END IF
21.			 END IF
22.		 END IF
23.	 END IF

www.manaraa.com

83

CI constitutes two types of Data Paths: the condition Data Path (Cond) computes all
the conditions (Fig. 4.12a) and the filter Data Path (LF_4) performs the actual filter-
ing operation (Fig 4.12b). The LF_BS4 CI requires 4 Data Paths of each type to filter
four rows of an edge. Threshold values α and β are packed with P (4-pixel group on
left side of the edge; see Fig. 4.10) and Q (4-pixel group on right side of the edge)
type pixels and passed as input to the control Data Path. The UV and BS act as control
signals to determine the case of Luma-Chroma and Boundary Strength, respectively.
The condition Data Path outputs two 1-bit flags X1 (for filtering P-type, i.e., pi pixels)
and X2 (for filtering Q-type, i.e., qi pixels) that act as the control signals of the filter
Data Path. The two sets of pixels ( P and Q type) are passed as input to this Data Path
and appropriate filtered pixels are chosen depending upon the two control signals.

Figure 4.11b shows the processing schedule of an Implementation Version of the
LF_BS4 CI with two instances of each of the condition and filter Data Paths. In first
two cycles, two rows are loaded ( P and Q of one row are loaded together due to the
availability of 128-bit memory access1). In cycle 3, two condition Data Paths are
executed in parallel followed by two parallel filter Data Paths in the cycle 4 to get
the filtered pixels for 1st and 2nd row of the edge. In the mean time, next two loads

1  It demonstrates how the available memory bandwidth can affect the design of a Custom In-
struction (CI). This schedule highly depends upon the two 128-bit ports. In case only one port is
available, only two pairs of condition-filter Data Paths would be sufficient to exploit the available
memory bandwidth.

Fig. 4.11   Custom instruction for in-loop deblocking filter with example schedule

LF_BS4 Custom Instruction Implementation Version

P1α

Q1β

UV BS

X1

X2

P1

Q1

P1'

Q1'

P2α

Q2β

UV BS

11

X3

X4

P2

Q2

P2'

Q2'

P3α

Q3β

UV BS

X5

X6

P3

Q3

P3'

Q3'

P4α

Q4β

UV BS

X7

X8

P4

Q4

P4'

Q4'

LOAD P,
Pα, Q, Qβ
LOAD P,
Pα, Q, Qβ

STORE
P’. Q’

STORE
P’. Q’

Cycles
1 2 3 4 5 6 7 8

LOAD P,
Pα, Q, Qβ
LOAD P,
Pα, Q, Qβ

STORE
P’. Q’

STORE
P’. Q’

LEGEND:

Condition Filter

Pi 4 Pixels left side
Qi 4 Pixels right side
Piα/Qiβ Threshold values packed

with 3 pixel values
UV/BS Control Signals for Luma/

Chroma and Boundary Strength

OUTPUT

INPUT

a

b

4.2 Designing Low-Power Data Paths and Custom Instructions

www.manaraa.com

84

are executed. In cycle 5 and 6, the filtered pixels of 1st and 2nd rows are stored
while condition and filter Data Paths are processed in parallel for 3rd and 4th rows.
In cycle 7 and 8, the filtered pixels of 3rd and 4th rows are stored.

Now the two Data Paths are discussed. All of the if-else equations are collapsed in
one condition Data Path that calculates two outputs to determine the final filtered val-
ues for the pixel edge. In hardware, all the conditions are processed in parallel and the
proposed hardware implementation is 130× faster than the software implementation
(i.e., running on GPP). It is noticed that the condition Data Path contains sub-byte
and bit-level computations which are amenable to fine-grained reconfigurable fabric.

Figure 4.12b shows the optimized Data Path to compute the filtered pixels for
Luma and Chroma and selects the appropriate filtered values depending upon X1 and
X2 flags. This Data Path needs fewer operations to filter the pixels on block boundar-
ies as compared to the standard equations. This Data Path is designed considering
the steps shown in Fig. 4.8. It exploits the redundancies in the operation sequence,
re-arranges the operation pattern, and reuses the intermediate results as much as
possible. The shift operations are realized as bit-level rewiring. Note that the filter
Data Path is made more reusable using multiplexers, thus both paths are processed

4 Adaptive Low-Power Video Coding

Fig. 4.12   The data paths for
filtering conditions and filter-
ing operation constituting
the for custom instruction for
in-loop deblocking filter

www.manaraa.com

85

in parallel and the output of one part is selected depending upon which condition is
chosen at run time. It is used to process two cases of Luma and one case of Chroma
filtering depending upon the filtering conditions. The filtering of a four-pixel edge in
software (i.e., running on GPP) takes 960 cycles for Boundary Strength = 4 case. The
proposed CI (Fig. 4.11a) using these optimized Data Paths (Fig. 4.12a and b) requires
only 8 cycles (Fig. 4.11b), i.e., a speedup of 120×. The measured power results the
Data Paths and the estimated power of LF_BS4 CI are presented in Sect. 6.2.3.

4.2.2  �Designing the Custom Instructions for Motion Estimation

As discussed in Chap. 2, Sum of Absolute Differences (SAD) is used for Integer-Pix-
el Motion Estimation (IME) and Sum of Absolute Transformed Differences (SATD)
is used for the Fractional-Pixel ME (FME). The CI SAD16 × 16 computes the SAD
of a complete MB that requires 256 subtractions, 256 absolute operations, 255 addi-
tions along with loading of 256 current and 256 reference MB pixels from memory.
The SAD16 × 16 CI constitutes two instances of the SADrow Data Path (Table 4.1)
that computes SAD of 4 pixels of current MB w.r.t. 4 pixels of reference MB.

The SATD4 × 4 CI (Fig. 4.13) uses four types of Data Paths to perform a com-
plete 4 × 4 SATD operation.

4.2 Designing Low-Power Data Paths and Custom Instructions

Fig. 4.13   Custom instruction for SATD4 × 4 showing the transform and SAV data paths

INPUT: IDCT=0
DCT=0

HT=0 OUTPUT:

Quadsub Repack Transform SAV (Sum of
Absolute Values)

IDCT

X00

X30 1

1

1

1

1

1

1

1

X10

X20

DCT HT

Y00
X1

X2 neg

neg

neg

neg

≥0

≥0

≥0

≥0

Y
X3

X4

Y10

Y30

Y20

IDCT=0
DCT=0

HT=0

www.manaraa.com

86

•	 QuadSub performs 4 subtractions; it takes eight unsigned 8-bit pixels Pi, Qi,
i = 0...3 and returns four 16-bit signed residue outputs, i.e., Ri = Pi − Qi; for i = 0...3.

•	 Repack rearranges the 16-bit half-words of its 32-bit inputs by packing two
16-bit LSBs and two 16-bit MSBs in two 32-bit outputs. If input1 = X1○X2 and
input2 = X3○X4, then output1 = X1○X3 and output2 = X2○X4.

•	 Transform (Fig. 4.13) performs a 4-point butterfly of (Inverse) Discrete Cosine
Transform or (Inverse) Hadamard Transform. Four Transform Data Paths are
used to perform a Hadamard Transform along one axis using only additions and
subtractions. The second stage of this operation performs an additional arith-
metical right-shift on the four results.

•	 SAV (Fig. 4.13) computes the absolute values of its four 16-bit inputs and returns
their sum. After the SAV Data Path, the four results are accumulated with three
additions to complete the SATD4 × 4 CI.

4.2.3  �Designing the Custom Instruction for Motion
Compensation

As discussed in Sect. 2.2.1, Inter Prediction uses block-based MoHi Btion Com-
pensation (MC) that employs a six tap Finite Impulse Response (FIR) filter with
weights [1/32, −5/32, 20/32, 20/32, −5/32, 1/32] to generate the samples at half-
pixel location for the Luma component of the reference frame.

The MC_Hz_4 CI (Fig. 4.14) computes the half-pixel interpolated values. It
takes two 32-bit input values containing eight pixels and applies a six-tap filter.

Fig. 4.14   Custom instruction for motion compensation showing different data paths

4 Adaptive Low-Power Video Coding

www.manaraa.com

87

In case of an aligned memory access, Repack rearranges the data for the filtering
operation. Then the PointFilter Data Path (Fig. 4.14) performs the actual six-tap
filtering operation. Afterwards, Clip3 Data Path (Fig. 4.14) performs the rounding
and shift operation followed by a clipping between 0 and 255.

4.2.4  �Area Results for the Custom Instructions of H.264 Encoder

Table 4.2 shows the implementation results for various Data Paths of H.264 en-
coder synthesized for the Xilinx Virtex-II FPGA. The power results and the power
measurement procedure will be discussed in Sect. 6.2.3. The critical path ranges
from 3.2 ns to 15.1 ns, while the reconfiguration time ( Treconf) ranges from 0.70 ms
to 0.91 ms.

4.3  �Spatial and Temporal Analysis of Videos Considering
Human Visual System

Although the digital image and video processing fields are built on a foundation
of mathematical and probabilistic formulations, human intuition and analysis play
a central role in the choice of one technique versus another, and this choice of-
ten is made based on subjective, visual judgments [GW02]. Therefore, important
properties of the Human Visual System (HVS) are considered in this scope of this
monograph to account for subjective (visual) quality. The luminance samples are
represented with the help of 8-bit pixels, where ‘0’ represents the darkest pixel
(i.e., black) and ‘255’ represents the brightest pixel (i.e., white). Some important
properties of HVS that are important for image and video compression (as in-
spired from [GW02; Pra01; WOZ02]) are as follows (see [GW02; Pra01; WOZ02]
for details):

Table 4.2   Implementation results for various data paths of the H.264 video encoder
Characteristics

Slices # LUTs Latency (ns) Reconfiguration
timea (ms)

Clip3 252 413 9.8 0.91
PointFilter 184 300 15.1 0.86
LF_4 144 236 11.6 0.80
Cond 82 132 8.1 0.78
CollapseAdd 36 58 7.4 0.70
SADrow 104 185 13.0 0.79
SAV 58 93 8.4 0.78
Transform 124 217 7.5 0.82
QuadSub 20 32 3.2 0.70
a Using 36 MB/s reconfiguration bandwidth

4.3 Spatial and Temporal Analysis of Videos Considering Human Visual System

www.manaraa.com

88

1.	 Human eye is more sensitive to brightness compared to color, therefore, the spa-
tial and temporal analysis is performed on the luminance component and the
observations can be extrapolated for color components.

a. � When the eye is properly focused, light from an object outside the eye is
imaged on the Retina. Pattern vision is afforded by the distribution of discrete
light receptors over the surface of the Retina. There are two classes of recep-
tors: Cones and Rods.

b. � The Cones function under bright light and can perceive the color tone; therefore,
at high levels (showing better discrimination) vision is the function of Cones.

c. � The Rods work under low ambient light and can only extract the luminance
information; therefore, at low levels of illumination vision is carried out by
activity of the Rods. Rods serve to give a general, overall picture of the field
of view and they are not involved in color vision.

d. � Therefore, at low ambient light, color has less importance compared to the
luminance.

2.	 Perceived color of an illuminating light source depends upon the wavelength range
in which it emits energy. Green wavelength contributes most to the perceived
brightness. There exists a secondary processing stage in the HVS, which converts
the three color values obtained by the Cones into one value that is proportional
to the luminance and two other values that are responsible for the perception of
chrominance, such that Y = ∫C(λ)ay(λ)dλ. C is the radiant intensity distribution of a
light, λ is the wavelength, and ay(λ) is the relative luminous efficiency function.

3.	 The subjective brightness (intensity as perceived by the HVS) is a logarithmic
function of the light intensity incident on the eye. Since digital images are dis-
played as a discrete set of intensities, the eye’s ability to discriminate between
different intensity levels is an important consideration.

a. � The perceived brightness is a function of contrast and light intensity. Visual
system tends to overshoot and undershoot at the boundary of regions of differ-
ent intensities as demonstrated by Match bands phenomenon. Another phe-
nomenon is simultaneous contrast, where objects appear to the eye to become
darker as the background gets lighter.

b. � Brightness Adaptation: The total range of distinct intensity levels that an eye
can discriminate simultaneously is rather small when compared with the total
adaptation range. Below that level, all stimuli are perceived as indistinguish-
able blacks.

c. � Weber Ratio (ΔIC /I): where ΔIC is the increment of illumination discriminable
50% of the time with background illumination I. The ability of the eye to dis-
criminate between changes in light intensity at any specific adaptation level
is also of considerable interest.

d. � The difference of luminance in a restricted area enhances the subjective
importance compared to constant intensity regions.

4.	 Moving objects capture more attention of the eye compared to the stationary objects.

Considering the above HVS properties, an extensive investigation of several video
sequences [Ari08; Xip10] was carried out to subjectively learn the HVS response

4 Adaptive Low-Power Video Coding

www.manaraa.com

89

to different statistics of video frames and their corresponding coding modes. Fig-
ure 4.15 shows the coding mode distribution (P-MBs and I-MBs) for the 7th frame of
‘American Football’ sequence encoded with the exhaustive RDO-MD using JM13.2
software of H.264 video encoder [JVT10]. The MBs with highlighted border show
the important MBs in the video frame along with their image statistics in the boxes.
The players (helmet and sharp moving body parts, e.g., legs) are the regions of inter-
est. These areas require better coding mode compared to other background objects
(e.g., grass). Although the background grass is also thin textured, it is relatively less
eye-catching. This grass can be characterized by low gradient and low variance and
it changes only minimal from frame to frame. Therefore, it is highly probable to
be encoded as P-MB using bigger block sizes, i.e., P16 × 16, P16 × 8, P8 × 16, and
P8 × 8 (see Fig. 4.15). Moreover, the changes in brightness (measured by contrast)
are also categorized as the region of interest. The higher the contrast is, the bigger
the difference of occurring brightness values is. The helmets, legs, and shirts are
indicated by high contrast value (compared to the background grass that exhibits
low contrast) and thus encoded using I4 × 4 or P8 × 8 and below (see Fig. 4.15). A
further measurement for rapid brightness changes is edge detection to identify the
strength of an edge and the angle of an edge (Fig. 4.17). Body parts of the players
contains significantly prominent edges compared to the stationary grass area.

This analysis revealed that MBs with high texture and fast motion (e.g., fast
moving players) are more probable to be encoded as I4 × 4, P8 × 8, P8 × 4, P4 × 8,
or P4 × 4 coding mode. On the contrary, homogeneous or low-textured MBs with
slow motion (e.g., grassy area) are more probable to be encoded as SKIP, P16 × 16,
P16 × 8, or P8 × 16 because the Motion Estimation (ME) has high probability to
find a good match. Similar behavior was found in various other video sequences
leading to the conclusion that majority of coding modes of a video frame can be
predicted correctly (with high-probability) using spatial and temporal statistics of
the current and previous video frames.

Figure 4.16 shows the percentage distribution of the optimal coding in Rafting
and American Football sequences (i.e., fast motion sequences) at different Quanti-
zation Parameter (QP) values. It can be noticed in Fig. 4.16 that at higher QP values
more than 60% modes are either SKIP or P16 × 16. Considering a near-optimal
coding mode can be predicted from the spatial and temporal properties of a video
sequence, significant complexity and energy reduction may be achieved.

Fig. 4.15   Mode distribution and video statistics in the 7th frame of American Football

4.3 Spatial and Temporal Analysis of Videos Considering Human Visual System

www.manaraa.com

90

Above-discussed analysis revealed that five primitive characteristics of a video
frame are sufficient to categorize an MB, thus to predict a probably-correct coding
mode. The decision of which video frame property to choose can be made consider-
ing the tradeoff between computational overhead and the provided precision in the
early mode prediction.

Average Brightness ( µMB) is used to categorize an MB as dark or bright. It is the
average of luminance values I( i,j) of an MB (Eq. 4.1).

� (4.1)

Contrast ( CMB) is the difference in visual properties that makes an object distinguish-
able from the background and other objects. In this monograph—due to its simplic-
ity—a modified version of Michelson Contrast [Mic27] is used as shown in Eq. 4.2.

� (4.2)

Variance ( σ2
MB) is a measurement for statistical dispersion (Eq. 4.3), thus it is used

as descriptor of smoothness or measurement of texture. If all samples have the same
brightness, then it is a flat/smooth area and the corresponding Variance is zero.

� (4.3)

Gradient ( GMB) is defined as the rate of change of luminance. In this case, it mea-
sures the average rate of change of luminance over a whole 16 × 16 MB, vertically

µMB =




15∑

i=0

15∑

j=0

(I (i, j)) + 128



 � 8

CMB =
[

max
0<(i,j)<16

I (i, j) − min
0<(i,j)<16

I (i, j)

]
� 8

σ 2
MB

=
15∑

i=0

15∑

j=0

(I (i, j) − µMB)2

4 Adaptive Low-Power Video Coding

Fig. 4.16   Optimal coding
mode distribution in raft-
ing and American Football
sequences at different Quanti-
zation Parameter (QP) values Rafting

QP-12

Skip Inter
16x16

Inter
16x8

Inter
8x16

Intra
16x16

Intra
4x4

Inter 8x8
or below

Skip Inter
16x16

Inter
16x8

Inter
8x16

Intra
16x16

Intra
4x4

Inter 8x8
or below

QP-28
QP-16
QP-32

QP-20
QP-36

QP-24
QP-40

American Football

0

20

40

60

80

100
P

er
ce

n
ta

g
e

M
o

de
D

is
tr

ib
u

ti
o

n

0

20

40

60

80

100

P
er

ce
n

ta
g

e
M

o
de

D
is

tr
ib

u
ti

o
n

www.manaraa.com

91

( Gx) and horizontally ( Gy). Therefore, it is regarded as an approximation of texture.
The first order Gradient ( GMB) along a particular direction is approximated by using
the difference between two pixel along that direction (Eq. 4.4).

�

(4.4)
Texture and Edges: In addition to Gradient, a more precise edge detection—oper-
ating on a finer granularity—is required to predict the smaller coding modes more
precisely. A Sobel Edge Filter is applied to obtain the magnitude and the direction of
edges for every 4 × 4 sub-block. The Sobel Edge Filter has the advantage of provid-
ing both differencing and smoothing effect. The total edge values for a 4 × 4 sub-
block, 8 × 8 block, and 16 × 16 MB are computed using Eq. 4.5. The direction angle
(in degrees) with respect to the x-axis is calculated as α4×4 = (180°/π) * tan−1(Gy/Gx).
 It is used to classify an edge into one of the following four directional groups
(Fig. 4.17).

�

(4.5)

Gx =




15∑

i=0

15∑

j=0

∣∣∣∂f
/
∂x

∣∣∣ + 128



 � 8, ∂f
/
∂x = I (i, j) − I (i − 1, j)

Gy =




15∑

i=0

15∑

j=0

∣∣∣∂f
/
∂y

∣∣∣ + 128



 � 8, ∂f
/
∂y = I (i, j) − I (i, j − 1)

GMB = (|Gx | +
∣∣Gy

∣∣ + 1)/2

Sx =




3∑

i=0

3∑

j=0

(
I (i + 1, j − 1) + 2I (i + 1, j) + I (i + 1, j + 1)

−I (i − 1, j − 1) − 2I (i − 1, j) − I (i − 1, j + 1)

)

Sy =




3∑

i=0

3∑

j=0

(
I (i − 1, j + 1) + 2I (i, j + 1) + I (i + 1, j + 1)

−I (i − 1, j − 1) − 2I (i, j − 1) − I (i + 1, j − 1)

)

S4×4 = |Sx | +
∣∣Sy

∣∣ ; S8×8 =
∑3

k=0
Sk

4×4; S16×16 =
∑3

k=0
Sk

8×8

4.3 Spatial and Temporal Analysis of Videos Considering Human Visual System

Fig. 4.17   Directional groups with respect to the edge direction angle and notion of spatial and temporal
neighboring macroblocks

1

8

3

6
4

5

7

0

76.7°

45°

–13.3°

–76.7°

C
u

rr
en

t
F

ra
m

e
F

TTL

L

D

TR

R

DRP
re

vi
o

u
s

F
ra

m
e

F

TTL

L

DL

TR

R

Te
m

p
o

ra
l

N
ei

g
h

b
o

rs

S
p

at
ia

l
N

ei
g

h
b

o
rs

DRDDL

Major Direction Intra 4x4 Direction Angle

0 4,5,6 –76.7° < α < –13.3°
–13.3° < α < 45°1 1,8

45° < α < 76.7°2 3,7

76.7° < α < –76.7°3 0

www.manaraa.com

92

The experiments revealed that solely image statistics are not sufficient to form a
good prediction of possible coding mode. A very high textured MB is well captured
by ME if it is stationary or exhibit small translational motion. In fact, the best cod-
ing mode may even be a SKIP mode if a textured MB is stationary. A prediction
purely based on image statistics would possibly tend to an Intra mode choice, thus
wasting a noticeable amount of bits. Therefore, in addition to the spatial properties
of video sequences, the temporal properties (i.e., motion-field and mode statistics
of the previously encoded spatial and temporal neighbors) are also evaluated to
corroborate the early prediction decision. The following temporal properties are
considered (considering the notion of neighboring MB as shown in Fig. 4.17):

SAD and MV of the Collocated MB:  A high SAD value and long MVs of the
collocated MB points to the fact that ME could not find a good match, as the MB
probably exhibits a hectic motion or it is the part of a suddenly revealed/hidden
object. In this case I-MB may be a good choice as a coding mode, while a short MV
and a small SAD value indicate an Inter mode candidate. If the collocated MB was
predicted to be an I-MB and all P-MB modes were excluded, no ME was executed
and therefore no SAD value and MV is available. In this case, only weighted SAD
combinations of spatially neighboring MBs are exploited.

SAD and MV of the Spatial and Temporal Neighbors:  Similarly, if the SAD
value for the neighboring MBs is small with a short MV, the current MB tends
to occupy only medium-to-slow motion and it is probably part of an object with
similar characteristics or background. High SAD values point to the significant
variations in this region, thus I-MB or P-MB with smaller block partitions are the
probable coding modes.

Coding Modes of the Neighboring MBs:  Another parameter, considered is the
correlation of neighboring MB coding modes. If several spatial and/or temporal
neighboring MB are encoded as I-MB, the current MB probably belongs to a fast-
moving object. Therefore, the probable coding mode for this is also I-MB. On the
contrary, if all neighboring MBs are coded with P-MB modes, the current MB is
likely to be coded with a P-MB mode.

In conclusion, investigating the spatial and temporal properties of MBs reveals
very useful information about the more-probably coding mode.

4.3.1  �HVS-based Macroblock Categorization

The spatial and temporal properties (as discussion in Sect. 4.3) are used to catego-
rize Macroblocks (MBs) in the following categories which will hint towards the
probable coding mode for these MBs.

Video Frame Statistics based Categorization:  Depending upon their spatial sta-
tistics, MBs can fall in one or many of the following categories:

4 Adaptive Low-Power Video Coding

www.manaraa.com

93

Combinations of the above-defined categories are used to predict the MB con-
tent characteristics (Eq. 4.6). A low gradient and a low variance value are very good
indicators for smooth and flat regions. If such MBs exhibit slow motion, P16 × 16
mode is the more probable coding mode. Similarly, smooth steady regions are cap-
tured by ME using block sizes above P8 × 8.

�

(4.6)

Directional Statistics:  An edge direction is called dominant if the edge sum
belonging to an edge direction group ‘i’ (see Fig. 4.17) significantly contributes to
the total edge sum of this MB.

�
(4.7)

Motion-Field Statistics are obtained using the motion characteristics of the neigh-
boring MBs as follows:

� (4.8)

Coding-Mode-FieldTotal Statistics are obtained considering the coding modes of
the spatial (in the current frame Ft) and temporal (in the previous frame Ft−1) neigh-
boring MBs encoded as an I-MB.

�

(4.9)

4.3.2  �QP-based Thresholding

QP-based thresholds are used for the above-discussed MB categorization
(Sect. 4.3.1) and predicting the probable coding mode of MBs considering the

MBHighTextured = (SH & VH)||(SH & GH)||(GH & VH)

SMB_StrongThick = !VH & SH & µB & GH

SMB_StrongThin = !µB & GH & VH & (!µD)

SMB_ManyThin = SH & µB & GH & VH

EDirMB_Dominant =
{

1, Si > ε ∗ SMB; i ∈ {0, 1, 2, 3}
0, Otherwise

EDirMB_Vt = S3 > 0.5 ∗ S0 EDirMB_Hz = S1 > 0.5 ∗ S0

SADMB_Spatial = (SADL + SADTL + SADT)/3

SADMB_Neighbors = (SADL + SADT + SADTR + SADMB_Collocated)/4

INbSpatial = isI(MBFt_L, MBFt_T , MBFt_TL, MBFt_TR)

INbTemporal = isI(MBFt−1_R , MBFt−1_DR, MBFt−1_D , MBFt−1_DL)

INbTemporalTotal = INbTemporal + isI(MBFt−1_Collocated)

+ isI(MBFt−1_L, MBFt−1_T , MBFt−1_TL, MBFt−1_TR)

INbTotal = INbSpatial + INbTemporal + isI(MBFt−1_Collocated)

Average Brightness (μMB) Very dark (µVD), dark (µD), bright (µB), very bright (µVB)
Contrast (CMB) Low ( CL), high ( CH) contrast
Variance (σ2

MB) Very low ( VVL), low ( VL), high ( VH) variance
Gradient (GMB) Very low ( GVL), low ( GL), high ( GH) gradient
Edge (SMB) Low ( SL), highly ( SH) edged

4.3 Spatial and Temporal Analysis of Videos Considering Human Visual System

www.manaraa.com

94

above-discussed analysis. For higher QP values, the effect of texture and motion
becomes blurry due to the increased number of zero coefficients. It follows the fact
that finding a good prediction is easier for ME, thus the number of injected I-MBs
decreases. Therefore, with changing QP values, the thresholds (related to the deci-
sions operating on the referenced frames) need to be adapted. This observation is
illustrated in Fig. 4.18. Frame encoded using QP = 16 has much higher number of
I-MBs compared to the same frame encoded using QP = 38.

Extensive experimentation was performed using different QPs (12–40) and sev-
eral video sequences (only a small subset of all sequences used for validation in
Sect. 4.4.4) to evaluate these thresholds. Polynomial curve fitting (using MATLAB)
was performed to obtain threshold equations as a function of QP, see Eq. 4.10. Ex-
periments revealed that only the thresholds for SAD, edge sum and motion vector
(thus the major characteristics for motion and texture detection) that operate on
the reconstructed video frame react to the changing QPs. Table 4.3 presents the

Fig. 4.18   Mode distribution of frame 4 in Rafting sequence using the exhaustive RDO-MD for
two different QP values: Left: QP = 16 and Right: QP = 38

Table 4.3   Thresholds and multiplying factors used in ACCoReS
Thresholds
Brightness µVD 70 Variance VVL 0.5 Texture edge ThDir 1000

µD 85 VL 1.25 ThS-Fast 5000
µB 135 VH 2 ThS-Slow 1350
µVB 175 Gradient GVL 5 ThS-P16x16 500

Contrast CL 0.2 GL 10 ThS-P8x8 1000
CH 0.7 GH 15 ThEdge 200

Intra
neighbors

ThI1 6 Intra neighbors ThI4 1 SKIP ThMV-Skip 3
ThI2 4 ThI5 2 ThSAD-Skip 323
ThI3 5 Motion ThAvgSAD 2500 ThS-Skip 4096

Multiplying factors
Motion δ1 0.4 Motion δ4 0.6 Texture edge Ψ 2.5

δ2 0.6 δ5 1.4 ε 0.7
δ3 0.5 δ6 1

4 Adaptive Low-Power Video Coding

www.manaraa.com

95

remaining thresholds (which are not affected by changing QPs) and other multiply-
ing factors. These QP-based thresholds and the MB categories (Sect. 4.3.1) based
on the analysis of spatial and temporal properties of the input video are used by the
Adaptive Computational Complexity Reduction Scheme (ACCoReS, Sect. 4.4) to
predict the probable coding mode of MBs.

�

(4.10)

4.3.3  �Summary of Spatial and Temporal Analysis of Videos
Considering Human Visual System

This section illustrated the analysis of spatial and temporal video properties and
the relationship of different video properties and the optimal coding mode are dis-
cussed. Based on this analysis a detailed Macroblock categorization is performed,
while considering the properties of the Human Visual System. In order to react to
the run-time varying coding conditions (e.g., bit rates), the thresholds are formu-
lated as a function of Quantization Parameter. This analysis is used by the adaptive
complexity reduction scheme, energy-aware Motion Estimation scheme, and multi-
level rate control.

4.4  �An HVS-Based Adaptive Complexity Reduction
Scheme

The proposed Adaptive Computational Complexity Reduction Scheme (ACCoReS,
Fig. 4.19) for H.264 encoder predicts the expected Macroblock (MB) type and its
coding mode even before processing the actual RDO-MD. It uses the spatial and
temporal properties of the input video sequence, i.e., image statistics, motion field
properties, and history-based information of the coding modes. The step-by-step
procedure is given as follows.

THSAD =






2500, QPprev < 20
9000, QPprev ≥ 40

−0.3QP3
prev + 38.3QP2

prev − 115.9QPprev + 11897, Otherwise

THE_High =






10000, QPprev < 20
13000, QPprev ≥ 28

−31.25QP2
prev + 1875QPprev − 15000, Otherwise

THE_Low =






8000, QPprev < 20
10000, QPprev ≥ 24

500QPprev − 200, Otherwise

TH(MV1,MV2,MV3) =






(20, 45, 30), QPprev ≤ 28
(30, 55, 40), QPprev ≥ 36

1.25QPprev − (15, 10, 5), Otherwise

4.4 An HVS-Based Adaptive Complexity Reduction Scheme

www.manaraa.com

96

Step-1: First, the HVS-based categorization of MBs (Sect. 4.3.1) is performed
using the spatial and temporal video statistics and the QP-based thresholds
(Sect. 4.3.2).

Step-2: Afterwards, a Prognostic Early Mode Exclusion for I-MB and P-MB cod-
ing modes is incorporated that excludes the highly unlikely modes. It exploits
different image statistics, motion-field properties, and previously computed
distortion data (e.g., based on correlation of the modes of previously encoded
neighboring MBs) to exclude as many I-MB and P-MB coding modes as possi-
ble before the actual RDO-MD and Motion Estimation while keeping the bit rate
and distortion loss within an imperceptible range (see Sect. 4.4.4). In many cases
the curtailed set of modes is left with either I-MB or P-MB modes, especially for
low-motion sequences. As a result it provides a significant complexity reduction
(thus processing improvement and reduced energy consumption) at the cost of an
insignificant overhead due to the image statistics calculation.

Step-3: A second level Hierarchical Fast Mode Prediction analyzes this curtailed
set of modes and provides a set of candidate coding modes, which are then pro-
cessed for RDO-MD.

Step-4: In the last step, Sequential RDO Mode Elimination is done. It processes
the candidate coding modes one-by-one starting from the bigger partitions. After
a mode is processed, it is evaluated for the termination condition or to exclude
further irrelevant modes.

In the best case, exactly one MB type and only one coding mode corresponding
to this MB type (out of 20 for P and 592 for I) is processed. The principal distinc-
tions of the proposed ACCoReS compared to the state-of-the-art approaches are the
Prognostic Early Mode Exclusion and the Hierarchical Fast Mode Prediction that
exclude more than 70% of the possible coding modes even before starting the fast
RDO-MD and ME while keeping the bit rate and distortion loss imperceptible (see
Sect. 4.4.4). Now, the different processing stages of ACCoReS will be presented in
detail.

Fig. 4.19   Overview of the adaptive computational complexity reduction scheme (ACCoReS)
showing different processing steps and MB categorizations

4 Adaptive Low-Power Video Coding

www.manaraa.com

97

4.4.1  �Prognostic Early Mode Exclusion

The Prognostic Early Mode Exclusion scheme starts with a classification of MBs
into the following two distinct groups using Eq. 4.11:

•	 Group-A: High-textured MB containing medium to fast motion
•	 Group B: Flat, homogenous regions with slow motion

Algorithms 4.2 and 4.3 present the pseudo-codes of Prognostic Early Mode Exclu-
sion for both Group-A and Group-B, respectively. In case of Group-A, I16 × 16 is
excluded (line 3) due to high texture and the best choice would most probably be
P8 × 8 or I4 × 4. However, exclusion of P16x16 at this point is critical as a wrong
exclusion may result in a significantly increased bit rate. Therefore, the exclusion
decision of P16 × 16 is performed in the Hierarchical Fast Mode Prediction step.
Lines 4–7 and 8–11 check for slow motion using the motion statistics of the spatial
neighboring MBs and exclude the smaller block partitions and I4 × 4 (lines 5, 9).
Lines 12–15 detect a high texture and hectic motion region. In this case, I4 × 4 cod-
ing mode is selected and all other modes are excluded.

�

(4.11)

In case of Group-B, a more sophisticated scheme systematically excludes the most
unlikely modes. Lines 3–5, 6–9, 13–27 check for slow motion, flat and homogenous

GroupMB =






A, (MBHighTextured & (µB ||CH))||VH ||EDirMB_Dominant

||(SMB_StrongThick||SMB_StrongThin||SMB_ManyT hin)
||(MBHighTextured & SADMB_Collocated > ThSAD)
||(µVB||(INbTotal > ThI4)) & (!GL)&(!VL))
||((INbSpatial > ThI4) & (S16x16 > ThEdge))

B, Otherwise

4.4 An HVS-Based Adaptive Complexity Reduction Scheme

Algorithm 4.2   Pseudo-code of group-A for prognostic early mode exclusion

1.	 GROUP-A: High-textured MB containing medium-to-fast motion
2.	� M = {P16x16, P16x8, P8x16, P8x8, P8x4, P4x8, P4x4, I16x16, I4x4} // Initialize the

possible coding modes with all modes
3.	 M  M \ {I16x16}; 	 // Exclude I16x16
4.	 If (SADMB_Spatial < δ3

* ThSAD) {
5.	 M  M \ {P8x8, P8x4, P4x8, P4x4, I4x4}; 	 // Exclude I4x4, P8x8 and below
6.	 return;		 // Go to Step-3 (Section 4.4.2)
7.	 }
8.	 If ((PredMV_Spatial < ThMV1) & (SADMB_Spatial < δ4

* ThSAD)) {
9.	 M  M \ {I4x4}; 	 // Exclude I4x4
10.	 return; // Go to Step-3
11.	 }
12.	� If (((INbTemporalTotal > ThI1) & (INbSpatial > ThI2)) || ((Pred

mv_Spatial > ThMV2) & ((SADMB_ Collocated
> ThSAD) || (INbTotal > ThI3)))) {

13.	 M  M \ {P8x8, P8x4, P4x8, P4x4}; 	 // Exclude P8x8 and below
14.	 return;		 // Go to Step-3
15.	 }
16.	 return;		 // Go to Step-3

www.manaraa.com

98

region, respectively. In these cases, I4 × 4, P8 × 8 and smaller partition modes are
excluded. If a homogenous MB is stationary, P16 × 16 is predicted to be the most
probable coding mode; otherwise, I16 × 16 is additionally processed (line 8). Lines
15–18, 19–25, 28–31 detect low motion and dark low-to-medium texture to exclude

4 Adaptive Low-Power Video Coding

Algorithm 4.3   Pseudo-Code of Group-B for Prognostic Early Mode Exclusion

1.	 GROUP-B: Flat, homogenous regions with slow-to-medium motion
2.	� M = {P16x16, P16x8, P8x16, P8x8, P8x4, P4x8, P4x4, I16x16, I4x4} // Initialize the pos-

sible coding modes with all modes
3.	 If (SADMB_Spatial <= δ1*ThSAD) {
4.		 M  M \ {P8x8, P8x4, P4x8, P4x4, I4x4}; // Exclude I4x4, P8x8 and below
5.	 }
6.	 If (VL & GVL & (!SMB_StrongThick) & (!SMB_StrongThin) & (!SMB_ManyThin)) {
7.		 If ((SADMB_Collocated < δ3*ThSAD) & (SADMB_Spatial < δ2*ThSAD)) {
8.			 M  M \ {I16x16}; 	// Exclude I16x16
9.		 }
10.		 M  M \ {P8x8, P8x4, P4x8, P4x4, I4x4}; // Exclude I4x4, P8x8 and below
11.		 return;	 // Go to Step-3
12.	 }
13.	 If (VL & GL & SL) {
14.		 M  M \ {P8x8, P8x4, P4x8, P4x4, I16x16}; // Exclude I16x16, P8x8 and below
15.		 If ((µD || CL) & (!MBHighTextured)) {
16.			 M  M \ {I4x4}; 	 // Exclude I4x4
17.			 return;	 // Go to Step-3
18.		 }
19.		 If ((PredMV_Spatial < ThMV1) & (SADMB_Spatial < δ2*ThSAD)) {
20.			 M  M \ {I4x4}; 	 // Exclude I4x4
21.		 }
22.	� If ((SADMB_Spatial < δ5*ThSAD) & ((SADMB_Neighbors < δ5*ThSAD) & (!MBHighTextured)
	 & (INbSpatial > ThI4)) {
23.			 M  M \ {I4x4}; 	 // Exclude I4x4
24.			 return;	 // Go to Step-3
25.		 }
26.		 return;	 // Go to Step-3
27.	 Else {
28.		 If (µD & GL & (!MBHighTextured)) {
29.			 M  M \ {I4x4}; 	 // Exclude I4x4
30.			 return;	 // Go to Step-3
31.		 }
32.		 Exclude I16x16 and Re-enable I4x4
33.		� If ((SADMB_Spatial < δ5*ThSAD) & ((SADMB_Neighbors < δ5*ThSAD) & (!MBHighTextured)

& (INbSpatial > ThI4)
		 || ((PredMV_Spatial < ThMV1) & (isI(MBFt-1_Collocated))) {
34.			 M  M \ {I4x4}; 	 // Exclude I4x4
35.		 }
36.		 If (PredMV_Spatial > ThMV3) {
37.			 M  M \ {P8x8, P8x4, P4x8, P4x4 }; 	 // Exclude P8x8 and below
38.			 return;	 // Go to Step-3
39.		 }
40.		 return;	 // Go to Step-3
41.	 }

www.manaraa.com

99

I4 × 4 mode; otherwise, I4 × 4 mode is re-enabled to avoid significant visual quality
loss. Lines 33–39 assure that modes with smaller block partitions are only excluded
if low motion and/or low textured are detected.

4.4.2  �Hierarchical Fast Mode Prediction

The Hierarchical Fast Mode Prediction (Fig. 4.20) performs a more refined second-
level mode exclusion to obtain a set of candidate coding modes, which is later eval-
uated by the RDO-MD process with an integrated Sequential RDO Mode Elimina-
tion mechanism.

P16 × 16 Mode Prediction:  If all modes except P16 × 16 are already excluded, then
P16 × 16 is processed unless SKIP mode is detected in the last step of Fig. 4.20. On
the contrary, P16 × 16 is excluded if the MB has fast motion and high texture.

P16 × 16, P16 × 8, P8 × 16 and P8 × 8 Mode Prediction:  Based on the assump-
tion “the pixels along the direction of local edge exhibit high correlation, and a
good prediction could be achieved using those neighboring pixels that are in the
same direction of the edge”, the main edge direction is investigated to split the MB

Fig. 4.20   Processing flow of the hierarchical fast mode prediction

4.4 An HVS-Based Adaptive Complexity Reduction Scheme

www.manaraa.com

100

accordingly. Hence, if the main edge direction is determined to be horizontal or ver-
tical, P16 × 8 or P8 × 16 block type is chosen, respectively. A very small edge sum
points out the presence of a homogeneous region, so only the P16 × 16 is processed.

Sub-P8 × 8 Mode Prediction:  In case the SAD of the neighboring MBs is too high,
P4 × 4 mode is predicted. In case the dominating horizontal or vertical edge direc-
tion is detected, P8 × 4 or P4 × 8 partition is selected, respectively.

Skip Mode Prediction:  If SAD of an MB in P16 × 16 mode is significantly low, a
perfect match could be very well predicted by ME. Such MBs are highly probable to
be SKIP, thus saving complete ME computational load. Similarly, if the collocated
MB is highly correlated with the current MB, then the probability of SKIP is very
high, e.g., the complete region is homogeneous. Moreover, if the MB lies in a dark
region, the human eye cannot perceive small brightness variations. Thus, the insig-
nificant distortion introduced by a forceful SKIP is tolerable here.

4.4.3  �Sequential RDO Mode Elimination

An integrated Sequential RDO Mode Elimination mechanism re-evaluates the can-
didate coding modes for sequential elimination, i.e., after P16 × 16 is processed,
P16 × 8, P8 × 16, P8 × 8, and below are re-evaluated for elimination as specified in
Fig. 4.20. However, for Sequential RDO Mode Elimination, the spatial SAD and MV
values are replaced by the actual SAD and MV of the previously evaluated mode.

4.4.4  �Evaluation of the Complexity Reduction Scheme

Table 4.4 provides the comparison (average and maximum) of ACCoReS with the
exhaustive RDO-MD for distortion, bit rate (a positive ΔBit Rate shows the bit rate
saving) and speedup. Each result for a sequence is the summary of 8 encodings
using different QP values. The average PSNR loss is approximately 3%, which is
visually imperceptible. However, ACCoReS provides a significant reduction in the
computational complexity, i.e., performance improvement of up to 19× (average
10×) compared to the exhaustive RDO-MD. The major speedup comes from slow
motion sequences (Susie, Hall, Akiyo, Container, etc.) as smaller block partitions
and I-MB coding modes are excluded in the Prognostic Early Mode Exclusion stage.

Figure 4.21 presents the percentage mode exclusions with respect to the total pos-
sible mode combinations for a large set of diverse sequences (averaged results for QPs
ranging from 12 to 40). In the best case, up to 73% (average  >50%) coding modes
are excluded. Figure 4.21 also shows that the large number of modes are excluded in
case of slow motion sequences (Susie, Hall, Akiyo, Container, etc.) due to the early
exclusion of smaller block partitions and I-MB coding modes. Figure 4.22 shows the
breakdown of different modes used in encoding of various sequences. In case of slow-
motion sequences (Akiyo, Susie, and Carphone) more modes are excluded because of
the correct identification of homogeneous regions. In this case more P8 × 8 and I4 × 4

4 Adaptive Low-Power Video Coding

www.manaraa.com

101

Fig. 4.21   Percentage mode excluded in ACCoReS for various video sequences

4.4 An HVS-Based Adaptive Complexity Reduction Scheme

Fig. 4.22   Distribution of
mode processing for QP = 28

Table 4.4   Summary of PSNR, bit rate, and speedup comparison for various video sequences (each
encoded using eight different QPs)

Sequence Average Maximum
ΔPSNR
(%)

ΔBit rate
(%)

Speedup
(x)

ΔPSNR
(%)

ΔBit rate
(%)

Speedup
(x)

CIF Bus 3.35 6.69 9.07 4.63 12.00 11.56
Susie 1.87 1.64 11.91 2.47 12.37 14.59
Football 4.91 2.74 9.65 5.66 3.37 13.05
Foreman 2.02 4.44 9.97 3.31 16.73 12.70
Tempete 3.42 10.22 8.47 4.78 14.53 10.75
Hall 1.82 6.79 12.33 4.34 29.92 14.81
Rafting 4.29 4.51 9.72 4.84 5.67 12.62
Mobile 3.38 6.42 8.52 5.05 11.61 10.99
Am. Football 3.91 7.81 8.76 5.41 10.52 11.61

QCIF Akiyo 0.61 −3.41 12.75 1.24 1.75 17.27
Carphone 2.44 6.39 10.20 3.19 11.51 12.86
Coastguard 2.53 4.58 9.35 4.04 11.32 12.53
Container 1.06 −7.15 13.00 1.57 4.01 19.13
Husky 4.83 5.73 7.71 6.18 7.44 10.31
Miss America 0.73 −8.86 12.05 1.72 14.25 14.72
News 1.77 −3.64 12.21 2.12 0.37 16.71

www.manaraa.com

102

are excluded with an insignificant loss in rate and distortion (see Table 4.4). On the
contrary, more I4 × 4 modes are processed for Rafting and Bus.

Figure 4.23 shows the number of SAD computed using the ACCoReS scheme
and the exhaustive RDO-MD scheme for various video sequences. ACCoReS com-
putes on average 27% of the SADs computed by the exhaustive RDO-MD scheme.
The major SAD savings come in case of fast -motion (Football, Foreman, and Raft-
ing) and highly textured sequences (Tempete and Mobile) as bigger block partitions
are excluded in the Prognostic Early Mode Exclusion stage.

4.4.4.1  �In-Depth Comparison with the Exhaustive RDO-MD

Figure 4.24 shows the in-depth comparison of ACCoReS with the exhaustive RDO-
MD for Susie sequence. It shows that ACCoReS suffers from an average PSNR loss
of 0.8 dB (max: 1.4 dB, min: 0.19 dB), which is visually imperceptible (above 40 dB).
However, ACCoReS achieves a significant reduction in the computational complex-
ity, i.e., ACCoReS processes only 17% of SADs (reduced ME load which is the most
compute-intensive functional block) compared to the exhaustive RDO-MD. The circles
in Fig. 4.24 show the region of sudden motion that causes disturbance in the temporal-
field statistics. As a result, ACCoReS suffers from a higher PSNR loss but also pro-
vides high SAD savings. Moreover, ACCoReS maintains a smooth SAD computation
curve, which is critical for embedded systems, while the exhaustive RDO-MD suffers
from excessive SADs. The PSNR curve shows that after frame 70, the mode predic-
tion quality of ACCoReS improves due to the stability in the temporal-field statistics.

Figure 4.25 shows the frame-wise distribution of correct mode selection by AC-
CoReS for Susie sequence at QP = 28. On average 74% of MBs are encoded with the

4 Adaptive Low-Power Video Coding

Fig. 4.23   Comparison of
total SAD computations for
various video sequences

On Average, only 7% of all SADs are computed compared to RD on Mode

Akiyo
 (Q

CIF)

AMFoot (C
IF)

BUS (C
IF)

Container (Q
CIF)

Football (C
IF)

Foreman (C
IF)

Hall (C
IF)

Mobile (C
IF)

News (Q
CIF)

Raftin
g (C

IF)

Susie (C
IF)

Tempete (C
IF)

20

0

40

60

80

100

120

140

N
u

m
b

er
 o

f
S

A
D

[i
n

 M
ill

io
n

s]

Exhaustive RDO-MD
ACCoRes

Fig. 4.24   Frame-level in-
depth comparison for Susie
sequence

0
50

100
150
200
250
300
350

37
38
39
40
41
42
43

First I-Frame
no SAD

computation

Sudden motion!
Heavy P8x8 ME

Max. Error: 1.4db
Exhaustive RDO-MD
ACCoReS

P
S

N
R

S
A

D
 [

x1
03

]

Changing number of SADs
due to adaptivity of UM-

HexagonS Motion Estimator
for exhaustive RDO-MD

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

www.manaraa.com

103

correct mode (MB Type and the corresponding block size), i.e., as selected by the ex-
haustive RDO-MD. The correct modes predicted by ACCoReS range from 63 to 83%.

Figure 4.26 illustrates the visual comparison of coded modes using ACCoReS
(top) and the exhaustive RDO-MD (bottom) for the 17th video frame of the Ameri-
can Football sequence (QP = 28). The grassy region is almost correctly predicted
(i.e., mostly P16 × 16 and partitions above P8 × 8 are used) and no I4 × 4 are false
predicted. ACCoReS predicts nearly in all cases P16 × 16 for the grassy region, be-
cause it is quite homogeneous and the motion is low. In overall, the prediction com-
plies with the best mode (as predicted by the exhaustive RDO-MD) in most of the
cases. Similar observations hold for the players at the left and right border side. The
main different point is encircled, where the exhaustive RDO-MD used I4 × 4 while
ACCoReS failed to predict. The movement is slightly below the motion threshold,
thus is not detected as fast-moving region. Additionally, this area is considered flat

Fig. 4.26   MB-level
mode comparison with
the exhaustive RDO-MD:
frame 17 of American
Football. Top: ACCoReS
[PSNR = 33.28 dB], Bottom:
Exhaustive RDO-MD
[PSNR = 34.52 dB]

4.4 An HVS-Based Adaptive Complexity Reduction Scheme

Fig. 4.25   Frame-level in-
depth evaluation of correct
mode prediction

Frames

C
o

rr
ec

t
M

o
d

es

Average:73.7%

www.manaraa.com

104

as it is blurred and exhibit less texture details. Consequently, these MBs are encoded
with P8x8 and above modes. On average, wrong decisions in this frame generate a
PSNR loss of 1.2 dB (33.28 dB vs. 34.52 dB), while both frames required a similar
amount of bits (76672 vs. 77760 bits). On overall, the proposed ACCoReS predicts
more than 70% of the total modes similar to the exhaustive RDO-MD.

4.4.4.2  �Overhead of Computing Video Sequence Statistics

The performance gain of ACCoReS comes at the cost of additional computation of
spatial and temporal video statistics. Experiments demonstrate that the PC-based
software implementation of these statistics computations are 4.6% of the total en-
coding time using ACCoReS, which is already up to 19× smaller than the encod-
ing time with the exhaustive RDO-MD. Compared to the performance savings of
ACCoReS, this overhead is negligible. The additional memory requirements are
(#statistics)*#MBs*16bits, where #spatial  + #temporal statistics = 5 + 2.

4.4.4.3  �Summary of the HVS-based Adaptive Complexity Reduction Scheme

This section presented the adaptive computational complexity reduction scheme
that excludes the improbable coding modes even before the actual RDO-MD and
Motion Estimation processes. This scheme uses the HVS-based MB categoriza-
tion. First the imprabable modes are excluded from the candidate list in a relaxed
prognostic early mode exclusion step. Afterwards, a more aggressive exclusion is
curtailing of the candidate coding mode set is performed in a hierarchical fast mode
prediction step. The output of this step is processed using an RDO-MD with consid-
eration of sequential mode exclusion, i.e., depending upon the output of an evalu-
ated mode, further modes are excluded from the candidate set.

4.5  �Energy-Aware Motion Estimation with an Integrated
Energy-Budgeting Scheme

As discussed in Sect. 3.1, Motion Estimation (ME) is the most compute-inten-
sive and energy demanding functional blocks of an H.264 encoder. Figure 3.3 in
Sect. 3.1.2 illustrated that ME may consume up to 65% of the total encoding en-
ergy, where the ME energy consumption is directly proportional to the number of
computed SADs to determine the best match (i.e., the MB with the minimum dis-
tortion). The available energy budgets may change according to various application
scenarios on mobile devices. Varying motion types and changing status of available
energy budgets stimulate the need for a run-time adaptive energy-aware Motion
Estimation scheme while exhibiting minimal loss in video quality (PSNR). The
energy-aware Motion Estimation needs to consider the following run-time varying
scenarios while keeping a good video quality (PSNR). These scenarios are:

4 Adaptive Low-Power Video Coding

www.manaraa.com

105

•	 available energy (due to a changing battery levels or allocated energy in a multi-
tasking system)

•	 video sequence characteristics (motion type, scene cuts, etc.)
•	 user-defined coding conditions (duration, quality level, etc.)

The challenge that arises here is:  how much energy budget should be allocated
to the ME of one video frame or even one MB when considering run-time varying
scenarios (as argued above). The allocated energy-budget to an MB or video frame
will determine the number of computed SADs. For a fast moving MB more ME
effort is required while for a stationary MB less effort is required (i.e., reduced num-
ber of SADs). A less ME effort for a textured MB with high motion may result in
significant PSNR loss. Therefore, in order to efficiently exploit the available energy,
carefully allocating the energy budget to different frames and MBs is crucial. It
is obviously not trivial to decide under which circumstances the allocated energy
budget will be sufficient enough to keep the PSNR loss insignificantly low (com-
pared to Full Search ME) when considering run-time varying scenarios. Hence, a
run-time adaptive energy-budgeting scheme for energy-aware Motion Estimation
is desirable.

This section introduces a novel run-time energy-aware Motion Estimation
scheme for H.264 that adapts at run time according to the available energy level.
It consists of different processing stages. The Motion Estimator is integrated with
a predictive energy-budgeting (enBudget) scheme that predicts the energy budget
for different video frames and different Macroblocks (MBs) in an adaptive manner
considering the run-time changing scenarios of available energy, video frame char-
acteristics, and user-defined coding constraints while keeping a good video qual-
ity. This is achieved by so-called Energy-Quality (EQ) Classes that the enBudget
scheme assigns to different video frames and fine-tunes at MB level depending
upon the predictive energy quota. Each EQ-Class represents a different ME con-
figuration. Therefore, these EQ-Classes differ in term of their energy requirements
and the resulting video quality. The enBudget scheme does not waste energy budget
for homogeneous or slow moving parts of a video sequence that do not require high
ME effort (i.e., more SAD computations). Instead, the saved energy budget in case
of slow motion sequences is allocated to the high motion sequences. This enables
the enBudget scheme to dynamically move in the energy-quality design space at run
time using the concept of EQ-Classes.

The enBudget scheme requires an adaptive Motion Estimator with multiple pro-
cessing stages in order to realize EQ-Classes. A novel Motion Estimator is proposed
in the scope of this work to facilitate the design of EQ-Classes considering different
processing stages.

4.5.1  �Adaptive Motion Estimator with Multiple Processing Stages

Now the constituting processing stages of the proposed adaptive Motion Estimator
will be explained.

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

www.manaraa.com

106

1.	 Initial Search Point Prediction: An adaptive Motion Estimator starts with an
Initial Search Point Prediction stage that provides a good guess of the vicin-
ity where the best match has a high probability to be found. A good predictor
provides a good starting point to converge quickly to the best match (i.e., near-
optimal Motion Vector, MV). Based on the assumption, the blocks of an object
move together in the direction of the object motion, spatial and temporal neigh-
bors are considered as good predictor candidates. Therefore, MV of the current
MB is highly correlated with MVs of the spatially and temporally adjacent MBs
that have been previously calculated. A set of predictors is selected by analyzing
the MV difference distribution between various predictors (see Eq. 4.12 and the
predictor set below) and the optimal MV (i.e., obtained by using the Full Search
algorithm). Figure 4.27a–c shows that spatial median predictor ( MedianSpatial,
Eq. 4.12) has a higher correlation with the optimal MV compared to the temporal
median predictors ( MedianTemporal1, MedianTemporal2, Eq. 4.12). This implies that
MedianSpatial needs to be examined first as it has high probability to be the True
Predictor2 (i.e., to find a near-optimal MV). It is noticed that MedianTemporal1
and MedianTemporal2 are also highly probable to be the True Predictors especially
when the MB is moving vertically or horizontally with a constant velocity.
Figure 4.27d, e illustrates that the spatial predictors exhibit a higher correlation
with the optimal MV compared to the temporal predictors. On overall, when
considering all of the predictors the probability of finding a near-optimal MV is
very high and refinement search stage will provide the best MV (MVBest, close to
or similar to that of the Full Search algorithm). The final selected predictor set is:

2  True Predictor represents the displacement close to the optimal MV obtained by the Full Search
algorithm.

PredictorsSpatial =
{
MVZero, MVLeft , MVTop, MVTop−Left , MVTop−Right , MedianSpatial

}

4 Adaptive Low-Power Video Coding

Fig. 4.27   Motion vector difference distribution in Foreman sequence (256 kbps) for various pre-
dictors compared to the optimal motion vector (obtained using the full search algorithm)

www.manaraa.com

107

(Median = Median) ?

(Median = Median) ?

TERMINATE Motion Estimation and returnSAD MV

YES

YES

NO

(Median = MV) ?

YES

SAD = SAD(MV)
MV = MV

NO

NO

Process
Search

Patterns

SAD = SAD(Median)
MV = Median

Process
Search

Patterns

YES

(Median =MV)?

SAD = SAD(MV)
MV = MV

Process
Search

Patterns

NO

YES

P
os

si
bl

e
S

K
IP

 d
ue

to
 S

ta
tio

na
ry

 M
B

NO

START

(Median = Median) ?

P
os

si
bl

e
S

K
IP

 d
ue

to
 S

ta
tio

na
ry

 M
B

P
os

si
bl

e
S

K
IP

 d
ue

to
 S

m
oo

th
 M

ot
io

n

Fig. 4.28   Predictor conditions for motion-dependent early termination

MVCollocated is the MV of the collocated MB in the previous frame (Ft−1).

�

(4.12)

After analyzing the predictor correlation in Fig. 4.27, a set of conditions is for-
mulated for the early termination of the ME process. Figure 4.28 shows the con-
ditions for the predictor set for early termination to save energy depending upon
the characteristics of motion field. Motion field changes with the properties of
input video sequence thus results in adaptation at run time. Selected predictors
are processed for SAD. The predictor with minimum SAD is compared against
Thresholdpred (see Eq. 4.13) for early termination. If early termination is not
detected then this predictor serves as the search center for the next ME stage.

2.	 Search Patterns: The Initial Search Point Prediction stage is followed by Tra-
versing the Search Pattern stage, which takes the best predictor as the search
center and evaluates different candidate points on the search pattern. The pro-
posed adaptive Motion Estimator incorporates the following four different
search patterns:

PredictorsTemporal =
{
MVCollocated , MedianTemporal1, MedianTemporal2

}

MedianSpatial = median(MVLeft, MVT op, MVTop−Right)Ft

MedianT emporal1 = median(MVLeft, MVT op, MVT op−Right)Ft−1

MedianT emporal2 = median(MVRight , MVDown, MVDown−Right)Ft−1

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

www.manaraa.com

108

a. � Octagonal-Star Search Pattern: This pattern consists of 20 search points
and handles large irregular motion cases. Figure 4.29 shows an Octago-
nal-Star search pattern executing at a distance of 8 pixels from the search
center. For small-medium motion and CIF/QCIF video sequences only
one Octagonal-Star search pattern is processed. For heavier motions/high
resolutions (D-1, HD), multiple Octagonal-Star search patterns may be
executed (each extended by a pixel distance of 8). The MV with minimum
SAD in this step will be chosen as the search center of the next search
pattern.

b. � Polygon and Sparse Polygon Search Patterns: A Polygon search pattern
consists of 10 search points and narrows the search space after process-
ing of Octagonal-Star search pattern. Figure 4.29 shows both Polygon
and Sparse Polygon search patterns. This search pattern favors horizon-
tal motion over vertical motion, because in typical video scenes horizon-
tal motion is dominant as compared to the vertical motion. The MV with
minimum SAD after this processing stage serves as the center for the next
search pattern.

c. � Small Diamond Search Pattern: At the end, a 4-point Diamond search pat-
tern is applied to refine the motion search.

If the calculated SAD of a candidate point in a search pattern is less than the
current SADBest, then SADBest and MVBest are replaced by the calculated SAD and
the candidate point. After processing all candidates points, the SADBest is checked
against a threshold to check the termination criterion. If not terminated, MVBest is
set as the center for the next search step.

4 Adaptive Low-Power Video Coding

Fig. 4.29   Four search patterns used in the adaptive motion estimator and the pixel-decimation
patterns for SAD computation

www.manaraa.com

109

3.	 Stopping Criteria: Early termination is integrated in patterns to stop the search
in case the current SADBest is smaller than a threshold. Early termination results
in energy saving but care should be taken in consideration to avoid false termina-
tion. Two different thresholds are used for early termination: Thresholdpred in the
Initial Search Point Prediction stage and Thresholdpattern in the Search Patterns
stage (Eq. 4.13).

� (4.13)

SADstationaryMB thereby is the SAD for a static MB (i.e., with zero motion). αpower
(Eq. 4.13) is the power-scaling factor that provides a tradeoff between recon-
structed video quality and energy consumption. The value of αpower is determined
dynamically (see Eq. 4.14). EC1 and EC1 are the normalized energy values of two
consecutive EQ-Classes values.

� (4.14)

δ and γ are modulation factors to provide a tradeoff between reconstructed
video quality and search speed. Initial values of δ and γ are determined by
Quantization Parameter (QP; see Eq. 4.15). The larger the value of QP is, the
larger are the values of δ and γ. This is due to the following reason: when the
quantization step is larger, the quantization noise is also larger and most of
the details of the reconstructed image are lost and in this case, the difference
between the best matching block and the sub-optimal matching block becomes
blurry. c1 and c2 are user-defined weights to control the effect of change in QP
value. If ME fails to achieve the time line, i.e., targeted frame rate ( FrameRa-
teTarget) encoding, then the values of δ and γ are increased at the cost of loss in
PSNR (Eq. 4.15).

�

(4.15)

A technique to reduce the energy of ME is block matching with pixel decimation.
Therefore, for reducing the energy of one SAD computation, several pixel decima-
tion patterns are proposed that are discussed in the following.

Matching Criterion (SAD) Decimation Patterns:  For block matching, the
matching criterion (SAD) is evaluated using every pixel of the MB. For one SAD
computation, 256 subtractions, 256 absolute operations, 255 additions are required

Thresholdpred = SADstationaryMB ∗ (1 + δ) ∗ αpower

Thresholdpattern = SADstationaryMB ∗ (1 + γ) ∗ αpower

αpower =
{

1.0; For the highest Energy EQ-Class
αpower + (EC1 − EC2); Else

δ = c1 ∗ (QP > 20?QP − 20 : 0)

δ+ = (FrameRateTarget − FrameRateAchieved)/(2 ∗ FrameRateTarget)

γ = c2 ∗ (QP > 20?QP − 20 : 0)

γ+ = (FrameRateTarget − FrameRateAchieved)/FrameRateTarget

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

www.manaraa.com

110

along with loading of 256 current and 256 reference MB pixels from memory.
In order to save energy for one SAD computation (reducing memory transfers
and computation) some pixels from SAD computations may be excluded when
the available energy is low. Since the block-based ME is based on the assump-
tion that all the pixels in an MB move by the same amount, therefore, a good
estimation of motion could be obtained by using only a fraction of the pixels in
an MB. An aggressive decimation will result in an inaccurate ME if the videos
contain small objects or high texture information. Therefore, the main issue is to
find such a scheme for matching pixel decimation that will not cause much deg-
radation in visual quality. Figure 4.29 shows four decimation patterns considered
for evaluation.

AltPixel, AltGroup4, AltRow patterns (Fig. 4.29) reduce the number of pixels
for SAD computation by 2, while AltGroup4AltRow reduces by 4 that directly
corresponds to an energy reduction (due to reduced memory transfers and compu-
tations) and still provides an insignificant PSNR loss. An analysis to explore the
quality impact (PSNR in dB) of these patterns on four benchmark Motion Estima-
tors (see details in Sect. 2.2.3) is shown in Table 4.5. AltGroup4AltRow gives a
PSNR loss of 0.2 dB and 0.34 dB for EPZS [Tou02] and UMHexagonS [CZH02],
respectively.

Although AltPixel and AltGroup4 reduce the energy, these are not very beneficial
for cache-based architectures because the data is already in the cache. On the other
hand, AltRow and AltGroup4AltRow are beneficial for cache-based architectures as
they skip row by row. Skipping the complete row is not advantageous for heavy-
textured videos with small objects. Therefore, only AltGroup4AltRow (obtain a sig-
nificant energy reduction even for cache-based architectures) and AltGroup4 (coun-
ter the issue of heavy-textured videos) are used for designing EQ-Classes as they
provide good tradeoff between energy saving and PSNR loss. These patterns scale
down accordingly for different block modes in H.264.

Now the enBudget scheme will be presented. It uses the above-mentioned adap-
tive Motion Estimator for designing the EQ-Classes, where each EQ-Class rep-
resent a certain ME configuration in terms of different ME stages, i.e., a certain
combination of settings of Initial Search Point Predictors, Search Patterns, and
SAD Decimation Patterns.

4 Adaptive Low-Power Video Coding

Table 4.5   Comparing the video quality of different SAD decimation patterns for encoding of
Susie CIF video sequence (30fps@256 kbps)
Motion estimator Video quality of different SAD decimation patterns (PSNR [dB])

Original Alt-Pixel Alt-Group4 Alt-Row AltGroup4-AltRow
Full Search 40.31 40.26 40.26 40.25 40.09
UMHexagonS 40.24 40.16 40.14 40.16 39.90
UMHexagonS Simple 40.18 40.06 40.04 40.05 39.80
EPZS 40.29 40.24 40.25 40.24 40.09

www.manaraa.com

111

4.5.2  �enBudget: The Adaptive Predictive Energy-budgeting
Scheme

Figure 4.30 shows the overview of the enBudget scheme. The proposed scheme has
three major phases:

•	 Group of Pictures (GOP)-level allocated energy quota computation
•	 Frame-level energy budget prediction and Base EQ-Class selection.
•	 MB-level EQ-Class refinements and upgrading/downgrading of Base EQ-Class

to determine the final EQ-Class for each MB.

The input to the enBudget scheme is available energy (battery status), user con-
straints (e.g., quality level, desired duration of encoding, etc.), compile-time analy-
sis of ME (i.e., average case energy distribution in a video encoder, see Fig. 3.3 in
Sect. 3.1.2), encoder configuration (e.g., encoding frame rate and target bit rate),
and video frame properties (Brightness, Texture, SAD, and MV). A set of compile-
time designed EQ-Classes with average and minimum energy requirements is pro-
vided to the enBudget scheme. The average energy is estimated through extensive
experiments using a wide-range of video sequences with diverse properties. How-
ever, at run time the average energy is updated considering the actual energy con-
sumption of the EQ-Class (that depends upon the currently coded video sequence)
using a weighted error mechanism. The step-by-step flow of the enBudget scheme
is as follows:

GOP-Level:  It may happen that the early GOPs in the video sequence may con-
sume a major portion of the total available energy and the later GOPs are left with
too less energy budget. This may harm the overall PSNR of the video sequence.
Therefore, to avoid such scenarios, each GOP is allocated a separate energy quota.

Frame-Level:  Available energy status, user-defined constraints, compile-time
analysis of ME, and encoder configuration are used for computing the allocated
energy quota ( EQuota) which is same for all frames in a GOP. It may happen that
the EQuota is more than the actual energy requirements of one frame ME. Examples

Fig. 4.30   Flow of the enBudget scheme for energy-aware motion estimation

Allocated
Energy Quota
Computation

Battery

Triggers

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

www.manaraa.com

112

of such scenarios are (a) the battery level is full and user wants a short duration
encoding, (b) the frame is homogenous and stationary or it exhibits low-to-medium
motion, (c) the motion properties are amenable to the search pattern of the ME. In
this case, the over-estimated EQuota is adjusted for computing the predictive energy
budget ( Epred) of a frame, such that the energy wastage due to the unnecessary SAD
computations (as possible in above-mentioned a-c cases) is avoided. Depending
upon the Epred value a frame-level Base EQ-Class is determined. After each frame is
encoded, Epred of the next video frame is readjusted in a feedback loop considering
that consecutive video frames exhibit high correlation (except scene cuts).

Macroblock-Level:  Since different MBs of a frame may exhibit diverse texture
and motion properties, an energy distribution approach is incorporated that gives
more energy to the complex MBs (i.e., high texture, high motion) and less energy
to homogenous or slow-moving MBs. In order to provide a consistent control at
frame-level, the Base EQ-Class is kept same for all MBs in the frame and refine-
ments are computed for each MB. A refinement may be defined as the upgrade or
downgrade step to the Base EQ-Class that determines a higher energy class or lower
energy class with respect to the Base EQ-Class. To avoid the violation of the Epred,
a clipping mechanism is integrated. For an MB, a final MB-level EQ-Class is then
determined and the ME configuration (e.g., Search Pattern, SAD Decimation Pat-
tern) for the corresponding EQ-Class is set. Afterwards, the ME is performed for
an MB and the actual energy consumption ( Econsumed), SAD, and MV are monitored.

After encoding all of the MBs in a video frame, the difference between EQuota
and Econsumed is computed and the Epred for the next frame is updated in a feedback
loop using this error. Moreover, depending upon the error between the energy of
Base EQ-Class ( EBaseClass) before ME and Econsumed, the energy of all EQ-Classes is
re-adjusted (see Fig. 4.30).

Before moving to the run-time algorithm of the enBudget scheme, the design of
EQ-Classes is discussed that serve as the foundation to the enBudget scheme and
enables it to move in the energy-quality design space at run-time.

4.5.2.1  �Designing Energy-Quality (EQ) Classes

The enBudget scheme supports the run-time tradeoff between the allocated ener-
gy to the ME and the resulting visual quality (PSNR) for a given bit rate using
the design-time prepared Energy-Quality (EQ) Classes. More SAD computations
will provide better match (i.e., better PSNR) but at the cost of higher energy con-
sumption. These EQ-Classes are designed using various combinations of the Initial
Search Point Prediction, Search Patterns, and SAD Decimation Pattern of the adap-
tive ME (as discussed in Sect. 4.5.1). Each EQ-Class provides an energy saving (as
it differs in its ME configuration) and suffers from a certain PSNR loss. Ideally for
computing the energy saving and PSNR loss, EQ-Classes should be benchmarked
against the Full Search ME as it provides the optimal match. However, as discussed
in Sect. 2.2.3, the Full Search ME demands huge amount of energy and it is im-
practicable in real-world applications. Therefore, UMHexagonS (a fast adaptive ME

4 Adaptive Low-Power Video Coding

www.manaraa.com

113

provides almost similar PSNR compared to the Full Search ME while providing
huge computation reduction [CZH02]) is used as a benchmark for computing the
energy savings and PSNR loss of different EQ-Classes.

Figure 4.31 shows the EQ-Class energy-quality design space for Foreman video
sequence (CIF@30fps, 256 kbps). Since the ME configurations form a discrete
set of EQ-Classes, the problem of optimal ME configuration selection (i.e., EQ-
Class selection) can be solved by Pareto analysis [Das99]. In the experiments of
Fig. 4.31, 8 Search Pattern combinations, 4 sets of Initial Search Point Prediction,
and 3 SAD Decimation Patterns (i.e., altogether 96 EQ-Classes) are used. The op-
timum EQ-Classes are the points in the energy-quality design space that form the
Pareto Curve (as shown by the line in Fig. 4.31). All EQ-Classes that lie above the
Pareto Curve are sub-optimal. It is worthy to note that this Pareto Curve provides
optimal EQ-Classes for a certain video sequence under certain coding settings. Due
to the diverse and unpredictable nature of video sequences and unpredictable de-
mands of end-users (i.e., varying bit rates), it is impossible to determine a set of EQ-
Classes at design time which provides the optimal ME configuration for all possible
combinations of diverse video properties and coding configurations. Therefore, an
extensive energy-quality design space exploration is performed for various video
sequences. From this analysis, a set of EQ-Classes is carefully selected considering
the similarities in the Pareto Curves.

Figure 4.31 shows cases where some EQ-Classes are close to each other on the
Pareto Curve, i.e., they exhibit only minimal difference in their energy reduction
and the corresponding PSNR loss. As each EQ-Class brings a certain PSNR varia-
tion, more EQ-Classes will cause frequent changes in the visual quality, thus vi-
sually uncomfortable for the user. Moreover, oscillation will result in a random
motion field, which will disturb the behavior of motion-dependent terminations in
the adaptive Motion Estimator. Therefore, a subset of EQ-Classes is selected (as
shown in Table 4.6 with their corresponding configuration), such that at run time

Fig. 4.31   Energy-Quality (EQ) classes: energy-quality design space exploration showing various
pareto points and the pareto curve

0

1

2

3

4

5

6

7

50 55 60 65 70 75 80 85 90 95 100

P
S

N
R

 L
o

ss
 [

%
]

Energy Saving [%]

ParetoPoints

ParetoCurve

Class D

Class C

∆ PSNR

∆E

Class A Class B

Sloop of the Pareto Curve is
Steep for Low Energy Classes

Sloop of the Pareto Curve is
low/mild for High Quality Classes

Sub-Optimal
EQ-Classes

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

www.manaraa.com

114

the switching between two EQ-Classes provides a significant energy reduction.
Moreover, less number of EQ-Classes will also reduce the execution time of the
enBudget scheme.

All EQ-Classes use the complete set of predictors because it is the most cru-
cial ME stage. To demonstrate this fact, the search efficiency of each ME stage
(Sect. 4.5.1) is investigated for several exemplary MBs of Foreman video sequence
(see Fig. 4.32). The search efficiency of each ME stage is defined by the decrease in
SAD that it brings at the cost of certain energy consumption. The search efficiency
of these ME stages may change for different MBs in a video frame. Figure 4.32
shows that among all ME stages, the search efficiency of Initial Search Point Pre-
diction is the highest. Therefore, all EQ-Classes use the complete set of Initial
Search Point Predictors. The gradient of Pareto Curve is defined as ΔPSNR/ΔE.
Figure 4.31 shows that the gradient for high energy EQ-Classes is low, while the
gradient for low energy EQ-Classes is quite high, i.e., ΔPSNRAB/ΔEAB << ΔPSNRCD/
ΔECD. Therefore, care needs to be taken when downgrading a high-energy EQ-Class
to a low-energy EQ-Class.

Each EQ-Class is initialized with an average-case energy consumption value.
However, due to the varying video sequence properties and adaptive early termina-

4 Adaptive Low-Power Video Coding

Table 4.6   Configuration and energy consumption for the chosen Energy-Quality (EQ) classes
Classes Pattern set SAD decimation

pattern
Avg. energy
(µWs)a

Min energy
(µWs)a

C1 Oct + SPoly + Diamond Full SAD 85.72 5.25
C2 Poly + Diamond Full SAD 59.47 4.97
C3 Diamond Full SAD 26.93 2.91
C4 Diamond AltGroup4 14.52 1.43
C5 SPoly + Diamond AltGroup4AltRow 10.66 0.67
C6 Diamond AltGroup4AltRow 5.81 0.59
a Averaged over various test video sequences for 90 nm ASIC.

Fig. 4.32   SAD vs. energy consumption comparison of different motion estimation stages for
Foreman sequence

www.manaraa.com

115

tion (Sect. 4.5.1), each EQ-Class may provide different energy saving for different
video sequences. Therefore, the energy of an EQ-Class is updated at run-time de-
pending upon the actual energy consumption for the given video sequence proper-
ties (as discussed later in this section).

4.5.2.2  �Run-time Algorithm of the enBudget Scheme

Algorithm 4.4 shows the pseudo-code of the enBudget scheme. Available energy
status (i.e., current battery level), user-defined constraints, encoder configuration,
compile-time ME analysis, video frame properties, and a set of EQ-Classes (Ta-
ble 4.6) are passed as input to the enBudget scheme (Fig. 4.30). The flow of algo-
rithm is systematically discussed as follows:

Step-1: GOP-Level (Lines 4–15): First, Quality Level ( QL) as specified by user-
defined constraints is readjusted depending upon the current battery level ( BL)
to ensure successful encoding in the given BL (line 6). If useQualityLevel is set
then, in lines 9–13 the GOP-level energy quota ( EQuota) is computed depending
upon the QL, otherwise the EQuota is computed using the BL and the encoding
duration required by the user (line 14). This EQuota is then used for predicting the
energy budget for all frames in the GOP.

Step-2: Frame-Level (Lines 16–27): The energy budget ( Epred) for one frame ME
is predicted using the EQuota and video frame properties. The energy error from
the previous frame is back propagated (using a weighting factor ξ1, which con-
trols the strength of back propagation) for the Epred calculation of the next frame
(line 17). Since different video frames may have different spatial and temporal
properties, Epred calculation needs to consider this fact. For example, a scene
cut may require more energy (as it will be shown in Sect. 4.5.3) due to a sud-
den disturbance in the temporal properties of a video sequence. Therefore, in
order to cope with the unpredictable nature of video data, the Epred is scaled
using the amount of texture difference ( TDiffAVG: computed using the Sobel Op-
erator) between two consecutive video frames (lines 18–20). The scaled Epred is
used to select the frame-level Base EQ-Class. The frame-level Base EQ-Class
is readjusted depending upon the brightness of the current video frame and the
average motion of the previous video frame (lines 23–25). As discussed above
using Fig. 4.31, the gradient for high energy EQ-Classes is much less than that
of the low energy EQ-Classes, thus care needs to be taken when downgrading a
high-energy EQ-Class to a low-energy EQ-Class. Therefore, the CDelta is clipped
between ±2 in line 26. The frame-level Base EQ-Class and the corresponding
energy are then passed to the MB-level EQ-Class selection stage.

Step-3: MB-Level (Lines 28–42): Since, different MBs of a video frame may have
changing texture and motion properties, therefore—at MB-level—the goal of the
enBudget scheme is to refine the frame-level Base EQ-Class for each MB of the
frame. It computes the EQ-Class refinement depending upon the MB properties
and upgrades or downgrades the Base EQ-Class accordingly. Dark homogeneous

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

www.manaraa.com

116

Algorithm 4.4   Pseudo code of the Run-Time Adaptive Predictive Energy-Budgeting Scheme

1.	 Function enBudget () 	 // For Each Video Frame
2.	 // Input: Image and Motion Statistics: Brightness (B), Texture (T, TdiffAvg ),

NdarkMBs =
∑#MBs

i=1 (BiAvg <ThB), MV, SAD, Battery Level (BL), User Constraints (Duration: DE,
Quality Level: QL), Encoder Configuration (e.g., fps, Target Bit Rate: TBR), Energy-wise
sorted list of EQ-Classes C=(C1, …, Cn  ) (Table 4.6), where C1 is the max energy class and Cn
is the min energy class, MEratio: ratio of ME energy to the encoding energy

3.	 BEGIN
4.	 // Step-1: GOP-Level Allocated Energy Quota: Compute once per GOP, this quota is

same for all frames in the GOP
5.	 If (  first_Frame_of_GOP) {
6.	 If �(BL < β*BTotal) QLLow; 	 // readjust the quality level depending upon the current

battery level
7.	 CBaseØ; 	 CMBØ; 	 // initializes the Frame- and MB-Level EQ-Classes
8.	 	 EQuota=0; 	 Econsumed=0; 	 ErrorClass=0; 	 ErrorQuota=0;    CDelta=0;
9.	 	 If (useQualityLevel) {
10.	 		 If (QL == High) 	 EQuota=getEnergy(C1);
11.	 		 Else If (QL == Medium) 	 EQuota=(getEnergy(C1)+getEnergy(Cn)+1)/2;
12.	 		 Else If (QL == Low) 	 EQuota=getEnergy(Cn);
13.	 	 }
14.	 	 Else   EQuota = min(max(MEratio * BL/DE, getEnergy(Cn)), getEnergy(C1));
15.	 }
16.	 // Step-2: Frame-Level: Determine Base EQ-Class
17.	 Epred = EQuota + ξ1 * ErrorQuota
18.	 If (TdiffAVG > τ1) 	ε = max(min(TdiffAVG / τ1, τ2), τ3);
19.	 Else	 ε = 1;
20.	 Epred = min(max(ε * Epred, getEnergy(Cn)), getEnergy(C1));
21.	 CBase = getClass(Epred); 	 // get the closest Frame-Level EQ-Class
22.	 // Image-/Motion-Based EQ-Class Adjustments
23.	 If ((NdarkMBs > Ndark1) & (SADAvg < ThSAD1)) 	 CDelta++;
24.	 Else If (SADAvg > ThSAD1) 	CDelta– –; // upgrade for high motion
25.	 Else CDelta += ((NdarkMBs > Ndark1) + (NdarkMBs > 2*Ndark1) + (SADAvg < ThSAD2));
26.	 CDelta = min(max(CDelta, –2), 2) + (T < τ4);
27.	 CBase = min(max(CBase+CDelta, Cn), C1); 	 EBase = getEnergy(CBase);
28.	 // Step-3: MB-Level EQ-Class Refinements
29.	 For all Macroblocks {
30.	 	 CDelta += ((NdarkMBs > Ndark1) & (SADAvg < ThSAD1) & (BMB < ThB)); 	// Dark MB
31.	 	 CDelta += ((NdarkMBs > Ndark1 || SADAvg < ThSAD2) & (BMB < ThB));
32.	 	 If (BMB ≥ ThB) {
33.	 		 CDelta += ((SMB < δ1*ThS || SADMB_Collocated < δ1*ThSAD3 ) + ((SMB < δ2*ThS || SADMB_Collocated

		 < δ2*ThSAD3));
34.	 		 CDelta – = ((SMB > (δ1+δ2)*ThS || SADMB_Collocated > (δ1+δ2)*ThSAD3);
35.	 	 }
36.	 	 CDelta = min(max(CDelta + (SADAvg < ThSAD2) + (SADAvg < ThSAD4), –2), 2);
37.	 	 If (MB == 0 & SADMB_Collocated < ThSAD5) // Stationary MB
38.	 		 CDelta CDelta += ((SADAvg < δ3*TBR) – 2*(SADMB_Collocated > δ4*TBR);
39.	 	 CMB = min(max(CBase + min(max(CDelta, –2), 2)), Cn), C1);
40.	 	 // Perform Energy-Aware Motion Estimation
41.	 	 Econsumed = Motion Estimation (CMB) 	 // (see Class Configuration in Table 4.6)
42.	 }
43.	 // Step-4: MB-Level EQ-Class Refinements
44.	 ErrorClass=Econsumed – EBase; 		 ErrorQuota=EQuota=0 – Econsumed;
45.	 For all EQ-Classes{
46.	 	 Energy[Ci] = max(getEnergy(Ci) + ξ2*ErrorClass, getMinEnergy(Ci));
47.	 }
48.	 END

4 Adaptive Low-Power Video Coding

www.manaraa.com

117

MBs with slow-medium motion (lines 30–33) or stationary MBs (lines 37–38)
require less ME effort, therefore the refinement is computed for downgrading.
This downgrade results in significant energy savings without PSNR loss for low-
textured MBs with slow motion. Alternatively, for MBs with high texture or
high motion, the refinement is computed for upgrading (line 34, 38). Clipping in
lines 36 and 39 is performed to avoid excessive downgrading or upgrading that
may result in severe PSNR loss or excessive energy consumption, respectively.
MB-level EQ-Class is computed (line 39) and the corresponding configuration is
forwarded to the ME (as specified in Table 4.6).

Step-4: Error Computation and Readjustments (Lines 43–47): After the ME is
completed for all MBs of a frame, Econsumed is used to compute the error between
Econsumed & Base EQ-Class energy ( EBase) and Econsumed & EQuota (line 44). Error-
Class is used to readjust the average-case energy of all EQ-Classes in a weighted
manner (lines 45–47) to adapt considering the properties of currently coded vid-
eo frames. EQuota is back propagated to update the Epred of the next video frame
(line 17). ξ1 and ξ2 are two weighting factors that control the strength of error
back propagation.

4.5.3  �Evaluation of Energy-Aware Motion Estimation  
with an Integrated Energy-Budgeting Scheme

Now the enBudget scheme will be integrated in two different Motion Estimators:
(a) The adaptive Motion Estimator as proposed in Sect. 4.5.1, (b) UMHexagonS
[CZH02]. The energy and video quality (PSNR) comparison will be performed for
the adaptive Motion Estimator with and without the enBudget scheme. For energy
estimation, the proposed power-model (see details in Sect. 3.4) is used. This section
also provides the frame-level and MB-level analysis of energy consumption for the
energy-aware Motion Estimation (i.e., the adaptive Motion Estimator of Sect. 4.5.1
and the enBudget scheme of Sect. 4.5.2). At the end, the enBudget energy con-
sumption will be compared for various fabrication technologies. The experimental
setup is: search range = 16, bit rate = 256 kbps, frame rate = 30 fps, Group of Pic-
tures = IPPP. Table 4.7 shows the coefficients and thresholds used in the algorithm
of the enBudget scheme (Algorithm 4.4). These coefficients and thresholds use the
similar methodology as discussed in Sect. 4.3.1 and 4.3.2. Note, all results include
the leakage and dynamic energy consumption considering the fact that ME hard-
ware is power-gated after the completion of one frame ME.

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

Table 4.7   Coefficients and thresholds used by the algorithm of enBudget in Algorithm 4.4
Attribute Value Attribute Value Attribute Value Attribute Value
τ1 3*#MBs δ1 0.9 ThSAD1 900 δ1 0.5
τ2 2 δ2 0.7 ThSAD2 500 δ2 0.5
τ3 1.1 δ3 1300 ThSAD3 2500 δ3 0.15
τ4 3000 δ4 2000 ThSAD4 400 δ4 #MBs/2
ThS 13000 ThB 85 ThSAD5 256 ThB

www.manaraa.com

118

4.5.4  �Comparing Adaptive Motion Estimator with and Without
the enBudget Scheme

Figure 4.33 illustrates that compared to the original adaptive Motion Estimator (as
proposed in Sect. 4.5.1), the adaptive Motion Estimator with enBudget achieves an
energy saving of up to 72% (avg. 60%) with an insignificant PSNR loss of 0.08 dB.
This shows that the benefit of incorporating the enBudget scheme in an adaptive Mo-
tion Estimator to transform it into an energy-aware Motion Estimation scheme. In
some cases ( Clair, Mobile, Hall), the video quality is even slightly better compared
to the original adaptive Motion Estimator. It is due to the fact that energy from smooth
MBs is saved and more energy is provided to the textured MBs which results in a
quality improvement in certain regions. This contributes to the overall video quality.

4.5.5  �Comparing UMHexagonS with and Without the  
enBudget Scheme

In order to validate the benefit and applicability of the enBudget scheme to other fast
adaptive ME schemes that have multiple ME stages, the enBudget scheme is addition-
ally integrated with UMHexagonS [CZH02]. Figure 4.34 illustrates that compared to

4 Adaptive Low-Power Video Coding

Fig. 4.34   Energy and quality comparison for the UMHexagonS [CZH02] with and without the
enBudget for various video sequences

Fig. 4.33   Energy and quality comparison for the adaptive motion estimator with and without the
enBudget for various video sequences

www.manaraa.com

119

the original UMHexagonS, UMHexagonS with enBudget achieves an energy saving of
up to 80% (avg. 70%) with a slight PSNR loss of 0.11 dB. This shows that the enBud-
get scheme is equally beneficial for other state-of-the-art fast adaptive MEs as well.

4.5.5.1  �Frame-level and MB-Level Analysis

Figure 4.35 shows the frame-wise energy consumption (for a 90 nm technology)
for three QCIF video sequences when using the proposed energy-aware Motion
Estimation with the enBudget scheme. Label-A points to the fact that, for a slow
motion sequence ( Clair), the energy consumption line is smooth as the consecutive
frames have high correlation, homogeneous background, and low motion. For Clair
sequence the energy-aware Motion Estimation converges to the EQ-Classes C5 and
C6 (see Table 4.6) depending upon the type of MBs (i.e., moving or stationary). For
such sequences, the energy-aware Motion Estimation provides significant energy
savings (see Fig. 4.33).

Label-B points to a more interesting scenario. For validating the robustness, the
proposed energy-aware Motion Estimation scheme is tested for some mixed video
sequences (e.g., SusieTable, alternate 50 frames of Susie and Table sequences are
merged). Scene cuts and sudden changes in video frame properties can be realized
in such sequences. Label-B in Fig. 4.35 points to the sudden energy consumption
peaks, which are mainly due to the scene cuts or disturbance in the temporal prop-
erties of video frames. In such cases, the energy-aware Motion Estimation scheme
selects EQ-Classes C1 and C2 for MBs in the scene cuts or MBs with high motion.
The detailed MB-level energy map for the scene cut corresponding to Label-B is
shown Fig. 4.36. Due to the scene cut there is a texture difference in two consecu-
tive video frames and the motion field is disturbed, as the objects of next frames no
longer exist in the previous frame. As in this case, the video frame at scene cut is not
encoded as Intra picture, ME requires high effort to find matches. This fact is visible
from the 0.3–0.5 µWs regions in Frame#100, where MBs required more energy for
ME. Similar effect is visible in many frames (varying peaks in Fig. 4.35).

Fig. 4.35   Frame-wise energy consumption of the energy-aware motion estimation

4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme

www.manaraa.com

120

4.5.5.2  �Energy Comparison for Different Fabrication Technologies

Figure 4.37 shows the energy consumption of various video sequences for differ-
ent FPGA fabrication technologies. Due to its low-power improvements [Kle10],
Virtex-6/-6L-based implementations have less energy consumption compared to
other FPGAs.

4.5.5.3  �Overhead of enBudget and Hardware Design

Table 4.8 shows the performance, area, and energy overhead of the enBudget
scheme for Xilinx Virtex-4-vlx160 (90 nm). The complete hardware implementa-
tion is in integer arithmetic. The overall energy overhead is insignificant as it is 106
times smaller than the energy benefit of the enBudget scheme. The memory over-
head for storing Texture and Brightness is 2*#MBs*16-bits. Texture and Brightness
computation for one MB requires 160 and 4 cycles at the cost of 129 and 31 slices.

4 Adaptive Low-Power Video Coding

Fig. 4.36   Macroblock-wise
energy consumption map
of two exemplary frames in
the SusieTableMix_QCIF
sequence for a 90 nm
technology

Fig. 4.37   Energy consumption of the energy-aware motion estimation for various FPGA fabrica-
tion technologies for various video sequences

www.manaraa.com

121

Table 4.8   Performance, area, and energy overhead of enBudget
Virtex-4-vlx160 FF1148 [90 nm]

Latency
(Cycles)

Area Energy [nWs]

Slices (GE) Leakage Dynamic
Group of Pictures (GOP)-

Level
51 1,028 24,967 22.44 21.42

Frame-level 75 1,001 24,516 31.50 34.50
Macroblock (MB)-level 4 597 14,252 1.04 1.36

Total [for 1 frame] QCIF 472 2,626 63,735 575.24 528.09
CIF 1660 2,626 63,735 2024.60 1858.65

4.5.5.4  �Summary of the Energy-Aware Motion Estimation  
and Energy-budgeting Scheme

This section presented the energy-aware Motion Estimation scheme that employs the
concept of Energy-Quality Classes, which enables it to move in the energy-quality
design space at run time. First, an adaptive Motion Estimator with multiple process-
ing stages is presented that provides a foundation for designing the Energy-Quality
Classes. The design of these Energy-Quality Classes is explained using a fast mo-
tion sequence, while highlighting the importance of different processing stages. The
Motion Estimator is integrated with an adaptive energy-budgeting scheme that pre-
dicts the energy budget for different video frames and different MBs considering the
run-time changing scenarios of available energy, video frame characteristics, and
user-defined coding constraints while keeping a good video quality. Such an ener-
gy-aware Motion Estimation scheme is crucial for advanced video encoders when
targeting battery-powered embedded multimedia systems. Especially, it is benefi-
cial for low-cost battery-powered mobile devices where available energy status is
changing erratically and energy-aware algorithms decide the life-time of the device.

4.6  �Summary of Low-power Application Architecture

In order to achieve high energy savings, there is a need to redesign an application
considering the potential of the underlying hardware platform. Therefore, first the
H.264 video encoder application architecture is redesigned targeting reconfigurable
processors. Several optimizations were performed to reduce the hardware pressure,
i.e., the fabric requirements of a given computational hot spots. The data flow and
data structures are discussed in detail along with their impact on the instruction and
data caches. Afterwards, the design of low-power Custom Instructions (CIs) and
Data paths was discussed. It was explained that operation reduction is required to
reduce the dynamic power the Data Paths. A case was explained in detail using the
In-Loop Deblocking Filter of the H.264 codec.

A detailed analysis of the spatial and temporal video properties was presented
in Sect. 4.3. Different properties of a Human Visual System (HVS) were discussed.

4.6 Summary of Low-power Application Architecture

www.manaraa.com

122

Considering this discussion, different relationship between the optimal coding mode
and the video properties were analyzed. Afterwards, important spatial and temporal
video properties were selected. Using these video and HVS properties, rules for
Macroblock categorizations were formulated. These rules facilitate the design of
adaptive complexity reduction and energy-aware Motion Estimation schemes. To
support various bit rates, Quantization Parameter based thresholding is employed
for the Macroblock categorization.

The HVS-based Macroblock categorization is used by the adaptive computa-
tional complexity reduction scheme (see Sect. 4.4) which operates in three main
steps. First the improbable coding modes are excluded using a relaxed prognostic
early mode exclusion. Afterwards, a more aggressive exclusion is performed us-
ing a hierarchical fast mode prediction. In the third step, Mode Decision process is
performed, where the candidate modes are processed one by one and the depending
upon the output of a candidate mode, further improbable modes are excluded. The
evaluation of the adaptive complexity reduction scheme is provided in Sect. 4.4.4
that demonstrates that 70% improbable modes are excluded with a minimal qual-
ity loss. Distribution of different evaluated modes and a frame-wise analysis of the
correctly predicted modes is presented. Furthermore, a subjective comparison of
the predicted modes and the optimal modes is performed to highlight the regions of
misprediction.

For each candidate coding mode, an energy budget is computed using a predic-
tive energy-budgeting scheme. This scheme is integrated in an adaptive Motion
Estimator (see Sect. 4.5.1) to realize an energy-aware Motion Estimation scheme.
To provide a run-time adaptivity for varying scenarios of available energy, chang-
ing user constraints and video properties, different Energy-Quality Classes are pro-
posed. Each Energy-Quality Class provides a certain video quality at the cost of a
certain energy consumption. It thereby enables the Motion Estimation to move in
the energy-quality design space at run time in order to react to the unpredictable
scenarios. The Motion Estimator is evaluated with and without adaptive energy-
budgeting scheme in order to demonstrate the benefit of budgeting and Energy-
Quality Classes. Moreover, a frame-level energy consumption analysis is provided
to show that the proposed budgeting scheme allocates less energy to the homoge-
neous Macroblocks with slow to medium motion, and more energy to the textured
Macroblocks with fast motion.

4 Adaptive Low-Power Video Coding

www.manaraa.com

123

This chapter presents the novel adaptive low-power reconfigurable processor
architecture with a run-time adaptive energy management scheme. It exploits the
novel concept of Selective Instruction Set Muting with multiple muting modes. The
first section analyzes different scenarios, while motivating the need for run-time
energy management. Afterwards, the adaptive energy management scheme with the
novel concept of Custom Instruction (CI) Set Muting is discussed in Sect. 5.2. In
this section different CI muting modes are explained along with the corresponding
configuration of sleep transistors for different parts of the reconfigurable fabric.
Afterwards, the required power-shutdown infrastructure is discussed. In Sect. 5.2.3
an overview of the energy management scheme is provided highlighting different
requirements and steps considered at design-, compile-, and run-time.

The energy management scheme operates in two major steps. First it determines
the energy minimizing instruction set considering the tradeoff related to leakage,
dynamic, and run-time energy under run-time varying constraints of performance
and reconfigurable fabric area (see Sect. 5.3). Afterwards, it determines the tem-
porarily unused set of CIs and determines an appropriate muting mode for each CI
considering the requirements of the currently executing and the upcoming compu-
tational hot spots (see Sect. 5.4). Section 5.4.3 presents how the energy benefit of a
muting candidate is computed. Section 5.4.4 discusses that how the requirements of
the upcoming hot spot are predicted and how the weighting factors for different CIs
of the upcoming hot spot are computed.

5.1  �Motivational Scenario and Problem Identification

Besides dynamic and leakage power, reconfigurable processors suffer from the
power consumed when reconfiguring the instruction set. As discussed earlier
in Sect. 3.4, the energy consumption of a reconfigurable processor (e.g., RISPP
[Bau09], see Sect. 2.3.5) consists of the following components:

�
(5.1)

EReconfProc = EcISA_dyn + EcISA_leak + EFPGA_dyn + EFPGA_leak + EFPGA_reconf

Chapter 5
Adaptive Low-power Reconfigurable Processor
Architecture

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3_5, © Springer Science+Business Media LLC 2011

www.manaraa.com

124

‘cISA’ and ‘FPGA’ denote the Core Instruction Set Architecture (i.e., the core pro-
cessor) and the run-time reconfigurable FPGA fabric (for Data Paths and CIs),
respectively. Note that the energy for performing a reconfiguration EFPGA_reconf is
actually part of the dynamic energy consumption but for clarity of subsequent dis-
cussions, it is listed separately. The process of reconfiguration causes the switch-
ing of configuration bits of the reconfigurable logic (CLBs: Configurable Logic
Blocks) and connections (switching matrix) in order to realize different Data Paths
(i.e., hardware accelerators) within the reconfigurable fabric. Therefore, EFPGA_reconf
may impose a non-negligible limitation on energy efficiency in reconfigurable pro-
cessors [Te06]. For instance, executing a specific CIi using a reconfigurable fabric
typically leads to a reduced dynamic energy consumption in comparison to execut-
ing that CI using CISA ( EFPGA_dyn( CIi) < EcISA_dyn( CIi)) due to faster CI execution
(achieved by exploiting the inherent data-level parallelism). However, providing CIi
in the reconfigurable fabric introduces an initial overhead EFPGA_reconf ( CIi). The total
number of executions of CIi is therefore important to determine whether or not it is
beneficial to execute CIi using the reconfigurable fabric.

Let us have a deeper look at the problem using the H.264 video encoder ap-
plication with three major hot spots namely Motion Estimation (ME), Encoding
Engine (EE), and Loop Filter (LF) that execute subsequently for each video frame
and require different sets of CIs (see Sect. 4.2, p. 80 for details). Figure 5.1a shows
a simplified time scale of the execution of these hot spots and their related recon-
figurations, where EFPGA_reconf represents the major energy component. Figure 5.1b
shows a different scenario for the same application where lesser reconfigurations
are used (i.e., EFPGA_reconf is smaller) to save energy (compared to Fig. 5.1a) at the
cost of a slower frame encoding time.

The situation takes another shift when exploring this scenario for 90 nm (and be-
low) technology nodes where leakage power may be more dominant, thus becoming
imperative in the energy-aware design of reconfigurable processors [Ge04]. Hard-
ware shutdown may be performed to reduce the leakage power of reconfigurable
processors by switching-off the power supply to the reconfigurable regions with the
help of high-Vt mid-oxide sleep transistors. The following components of a recon-
figurable fabric can be individually shut down:

•	 Logic: Configurable Logic Blocks (CLBs) and programmable interconnect
switch matrices (i.e., the routing resources that connect various CLBs)

•	 Configuration SRAM: The SRAM1 cells that store the control bits, which de-
fine the configuration of the Logic

Note, shutting down the configuration SRAM of a reconfigurable region results in
loss of its configuration data (as it is volatile). Therefore, it must be reconfigured
again after powering-on, potentially requiring the overhead of an additional recon-
figuration.

Then, the challenging question arises: whether to better shut down regions of
the reconfigurable fabric (and execute the CIs using the CISA instead) to reduce

1  In Xilinx FPGAs, 38% of the leakage power is consumed by the configuration SRAMs [TL03].

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

125

EFPGA_leak or using a larger share of the reconfigurable fabric to decrease the ap-
plication execution time at the cost of a higher EFPGA_reconf. In Fig. 5.1b lesser CIs
are executed on the reconfigurable fabric (smaller EFPGA_dyn) and a bigger portion of
the reconfigurable fabric can be shut down2 (indicated by the lower heights of the
boxes, e.g., ME). However, due to a longer execution time of the hot spot, EFPGA_leak
in Fig. 5.1b is not significantly reduced and EcISA_leak + EcISA_dyn grow larger as more
CIs are now executed using the CISA. Similar scenarios could be drawn for other
applications alike, especially when considering multi-tasking systems where it can-
not be predicted at compile/design time:

a.	 which task will obtain which share of the reconfigurable fabric
b.	 what is the task priority (may change at run time)
c.	 which task will run under which performance constraint, e.g., due to changing

user preferences (e.g., desired frames per second in case of the H.264 application)

It is obviously not trivial to decide under which circumstances the execution using
a reconfigurable fabric is energy-efficient or not especially when the application
exhibits characteristics that cannot be predicted at design/compile time.

2  At 150 nm, shutting down the currently unused portions of the reconfigurable fabric may not
lead to noticeable savings and thus EFPGA_reconf may dominate whereas in case of 65 nm it may be
vice versa.

Fig. 5.1   Simplified comparison of energy consumption, highlighting the effects of different
reconfiguration decisions

5.1 Motivational Scenario and Problem Identification

www.manaraa.com

126

The problem is that under scenarios of run-time changing performance and/
or area budgets, it can hardly be predicted at design/compile time which set of CI
Implementation Versions will minimize the energy consumption when considering
leakage, reconfiguration, and dynamic energy. At some point in time leakage may
dominate, while at some other points in time (e.g., due to changed system con-
straints), reconfiguration energy may dominate. Decisions made solely at design/
compile time will therefore with high certainty lead to energy-inefficient scenarios.
Hence, a technology-independent run-time adaptive energy management scheme
for reconfigurable processors is desirable.

5.1.1  �Summary of the Motivational Scenario and Problem
Identification

This section illustrated the need for run-time adaptive energy management with the
help of different scenarios for H.264 video encoder. It was discussed that in which
scenario leakage energy is more critical and in which scenario reconfiguration en-
ergy is more critical. It is also discussed why there is a need for joint consideration
of leakage, dynamic, and reconfiguration energy in order to minimize the overall
energy in dynamically reconfigurable processors. This section also discussed that
why this problem cannot be solved at compile-time and why there is a need for run-
time adaptive energy management.

5.2  �Run-time Adaptive Energy Management with  
the Novel Concept of Custom Instruction Set Muting

Section 5.1 provided the motivational scenarios for identifying the energy problem
in reconfigurable processors highlighting the issues related to leakage and recon-
figuration energy under run-time varying scenarios. This section will introduce the
novel concept of instruction set oriented shutdown (Sect. 5.2.1) that enables a far
higher potential for leakage energy savings. The proposed concept of instruction set
muting requires a power-shutdown infrastructure which is described in Sect. 5.2.2.
Section 5.2.3 illustrates the decisions taken at design-, compile- and run time along
with the Run-Time Adaptive Energy Management Scheme. The energy management
scheme dynamically determines a set of energy-minimizing CI Implementation
Versions for each hot spot considering leakage, dynamic, and reconfiguration en-
ergy such that these CIs fulfill the given performance and reconfigurable fabric area
constraints. Afterwards, it decides which subset of CIs shall be muted at what time
and in which mode in order to minimize the overall energy (considering leakage,
dynamic, and reconfiguration energy). The details of determining the Energy-Mini-
mizing Instruction Set and the Instruction Set Muting including the formal problem
description and the algorithms will be discussed in the subsequent sections.

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

127

5.2.1  �Concept of Muting the Custom Instructions

Before proceeding to the run-time adaptive energy management, this section intro-
duces the concept of Instruction Set Muting which provides the foundation for the
run-time adaptive energy management.

As discussed in Sect. 2.4, state-of-the-art low-power approaches in ASICs and
FPGAs, deploy shutdown schemes that statically determine the parts of a recon-
figurable fabric (Logic or Logic + Configuration SRAM) that can be powered-off
[Ge04; MM05]. These approaches monitor the usage/state of a particular hardware
and issue the shutdown signal to the hardware, e.g., after the hardware is idle for a
certain threshold time (e.g., [Ge04]). These approaches mainly focus on hardware-
oriented shutdown of the reconfigurable fabric irrespective of the application con-
text (e.g., control flow, application priority etc.) and execution length of hot spots.
Therefore, idle periods of Custom Instructions (CIs) cannot be exploited for the
purpose of energy savings. When targeting reconfigurable processors, it is no longer
efficient to employ the above-mentioned approaches, as it cannot be determined
at compile time which CIs will be reconfigured on which part of the reconfigu-
rable fabric. As a result, these hardware-oriented shutdown schemes suffer from the
limitation of inflexibility and are highly dependent upon the underlying shutdown
policy (see Chaps. 2 and 3).

A novel technique is proposed in this monograph, that shuns the leakage en-
ergy at the abstraction level of CIs (i.e., an instruction set oriented shutdown). This
concept is named as selectively muting the CIs. The proposed technique uses a
power-shutdown infrastructure (see Sect. 5.2.2) in order to define the so-called CI
muting modes (see Table 5.1) each leading to particular leakage energy savings. The
proposed concept relates leakage energy to the execution context of an application,
thus enabling a far higher potential for leakage energy savings. The run-time adap-
tive energy management in Sect. 5.2.3 aims at exploiting this potential. It decides
which parts of the CI set shall be muted at what time and in which mode in order
to minimize the overall energy (considering leakage, dynamic, and reconfiguration
energy), as discussed in Sect. 5.2.3.

A CI may be muted through one of the following muting modes (see Table 5.1):

Mode I: Non-Muted CI (NM-CI):  CI is active and operational.

Mode II: Virtually-Muted CI (VM-CI):  CI cannot be executed due to the pow-
ered-off Logic. No reconfiguration is required in order to deploy this CI as its
Configuration SRAM is kept powered-on. Hence, the otherwise necessary recon-
figuration energy is not consumed. Therefore, the reduction in leakage energy is
lower compared to Mode III (below). Mode II is beneficial when a subset of CIs is
not demanded for a rather short period.

Mode II: Fully-Muted CI (FM-CI):  CI is not operational, as both Logic and Con-
figuration SRAM are powered-off. This significantly reduces the leakage energy.
However, in order to deploy this CI, a reconfiguration is required which costs recon-

5.2 Run-time Adaptive Energy Management with the Novel Concept

www.manaraa.com

128

figuration energy and latency. Mode III is beneficial when a subset of CIs is not
demanded for a rather long period.

The challenge is to determine which muting mode of Table 5.1 is beneficial for
which set of CIs under run-time varying application contexts, i.e., which muting
modes for CIs will bring more energy reduction while jointly considering the leak-
age, dynamic, and reconfiguration energy. This decision depends upon the execu-
tion length of the computational hot spots during which different CIs are used for
the application acceleration. Moreover, this decision also depends upon the require-
ments of upcoming hot spot executions and the performance constraints (i.e., more
or less reconfigurable fabric is required to accelerate hot spots). This challenge will
be addressed by the proposed Selective Instruction Set Muting technique, which
will be discussed in detail in Sect. 5.4.

To realize these muting modes, a power-shutdown infrastructure is required, as
discussed below.

5.2.2  �Power-shutdown Infrastructure for the Muted  
Custom Instructions

Figure 5.2 provides an overview of the infrastructure needed to apply the CI mut-
ing technique for reconfigurable processors. Multiple Data Path Containers (DPCs)
are connected to a core pipeline. Each DPC is composed of multiple reconfigurable
tiles and each tile contains Configurable Logic Blocks (CLBs) and programma-
ble interconnect switch matrices (i.e., the routing resources that connect different
CLBs). Control bits define the configuration of logic and routing resources and are
stored in local Configuration SRAM, as shown in Fig. 5.2.

In order to realize different CI muting modes (as shown in Table 5.1), the power
supply of each DPC is connected to two independent sleep transistors, one for the
Logic and the other for the Configuration SRAM. Note that these two sleep tran-
sistors are used for all tiles of a particular DPC, whereas two different DPCs use
different sleep transistors. The control signal for these sleep transistors for a given
muting mode is specified in Table 5.1.

Table 5.1   Various custom instruction (CI) muting modes
Logic Configuration

SRAM
CI muting Use-case for the CI

ON ON I. Non-Muted (NM-CI) CI is demanded or it is scheduled to be
reconfigured soon

ON OFF N/A N/A (turning the Logic on but the
configuration off may lead to
undesired system behavior)

OFF ON II. Virtually-Muted (VM-CI) CI is not demanded, but expected to
be demanded soon

OFF OFF III. Fully-Muted (FM-CI) CI is not demanded and it is not sched-
uled to be reconfigured soon

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

129

Figure 5.3 shows an example of muting the temporary unused set of CIs. After
determining the energy-minimizing set of CIs for the current hot spot, the energy
management scheme decides the muting mode of CIs. In order to set a particular
muting mode for a CI, the control signal (as specified in Table 5.1) for the sleep
transistors are issued to all DPCs of this CI. In Fig. 5.3, CI-A is Virtually-Muted
(i.e., only the logic of DPC-1 and DPC-2 is power-gated) and CI-C is Fully-Mut-
ed (i.e., the logic and configuration SRAM of the DPC-6, DPC-7, and DPC-8 are
power-gated). CI-B is kept in the Non-Muted mode (i.e., the logic and configuration

Fig. 5.2   Infrastructure neces-
sary to exert the proposed CI
muting technique

C
o

re
 P

ip
el

in
e

Power Rail

TILE M
u

te
-M

o
d

e
C

o
n

tr
o

lle
r…

…

…

Legend

5.2 Run-time Adaptive Energy Management with the Novel Concept

Fig. 5.3   Muting the temporarily unused instruction set

www.manaraa.com

130

SRAM of the DPC-3, DPC-4, and DPC-5 are kept powered-on) as it is used by the
current hot spot.

This power-shutdown infrastructure is currently not available in today’s com-
mercial FPGAs. Therefore, previous work in reconfigurable processors has not
explored such a leakage energy reduction technique at the instruction set level. It
is envisioned that that if FPGA vendors would provide this simple infrastructure,
there would be a great opportunity to exert the proposed CI muting technique. It is
especially beneficial for highly flexible Custom Instruction set architectures like
RISPP [Bau09]. Consequently, reconfigurable processors would be far more energy
efficient.

5.2.3  �Run-time Adaptive Energy Management

Now the run-time adaptive energy management in reconfigurable processors will
be explained in detail. Figure 5.4 presents an overview of the steps to be done at de-
sign, compile, and run time while highlighting the proposed run-time adaptive ener-
gy management scheme, its main tasks, and its connection to the system. At design
time, the size of the reconfigurable fabric (i.e., how many DPCs are provided for
loading Data Paths) and the core processor are fixed for a certain fabrication tech-
nology node (that determines their corresponding power properties). At compile
time, the Data Paths are designed and their configuration bitstreams are generated.

5 Adaptive Low-power Reconfigurable Processor Architecture

Fig. 5.4   Overview of the proposed adaptive low-power reconfigurable processor with run-time
adaptive energy management along with the design-, compile-, and run-time steps

RUN TIME

Power Estimation
[Section 3.4]

Muting Decisions for the
temporarily unsed set of CIs

[Section 5.4]

Determine the Energy-
Minimizing Instruction Set

[Section 5.3]

Run-Time Adaptive Energy Management Scheme

Instruction
Memory

Data Path
Bitstreams

Data Path Loading
Sequencer

Custom Instruction
Execution Control

Reconfigurable Fabric
[Partitioned into Data Path Containers]

Power Properties

COMPILE
TIME

DESIGN TIME

Power Model
[Section 3.4]

Compute CI Weighting
Factors [Section 5.4.4]

www.manaraa.com

131

Additionally, the configuration for various Implementation Versions is generated
at compile time (using the in-house developed automatic tool chain) considering
different resource constraints (i.e., different types of Data Paths in varying quanti-
ties). The bitstreams of Data Paths and the Custom Instruction (CI) Implementation
Versions were used to build the power model of dynamically reconfigurable proces-
sors (as discussed in Sect. 3.4, p. 63). This power model is then used to estimate the
power at run time.

At run time, the key tasks of the energy management scheme are:

a.	 to dynamically determines a set of energy-minimizing CI Implementation Ver-
sions for each hot spot considering leakage, dynamic, and reconfiguration energy
such that these CIs fulfill the given performance and reconfigurable fabric area
constraints.

b.	 to determine the muting decisions for the temporarily unused subset of the CIs.

These decisions may depend upon the number of CI executions that may vary at
run time due to the application level adaptivity (as discussed in Chap. 4), chang-
ing input data, performance constraints, and the execution length of the hot spot.
The online-monitoring and the prediction scheme (as discussed in Sect. 2.3.5) are
used to track and dynamically update the CI execution frequencies (i.e., which CI
has executed how often for a certain hot spot). This is used as an input to the energy
management scheme for choosing the energy-minimizing set of CI Implementation
Versions.

The power consumption of different CI Implementation Versions is estimated
using the proposed power model for dynamically reconfigurable processors con-
sidering the power used by computations (Data Paths), communication (buses),
and local memory (as presented in Sect. 3.4, p. 63). The estimated power of CI
Implementation Versions is forwarded to the energy management scheme. Since the
placement of a Data Path on the reconfigurable fabric is unknown at the time the en-
ergy-minimizing set of CIs is determined, an average-case number of bus segments
for the communication (see Sect. 3.4.1) are considered in the power estimation.

The estimated power consumption of the CI Implementation Versions and
the predicted CI execution frequencies are forwarded to the energy management
scheme for choosing an energy-minimizing set of CI Implementation Versions
under varying constraints (details are explained in Sect. 5.3). Although each fab-
rication technology exhibits distinct leakage and dynamic power properties, the
goal is to minimize the overall energy consumption (i.e., jointly considering leak-
age, dynamic, and reconfiguration energy) such that the chosen set of CI Imple-
mentation Versions fulfill the given performance and reconfigurable fabric area
constraints. Therefore, the energy management scheme is beneficial for various
fabrication technologies and different reconfigurable architectures. It is noted that
the performance constraint and the amount of available reconfigurable area (i.e.,
the number of available DPCs) may change at run time due to, for example, user
requirements, input data properties, changing number of tasks and their priorities
(see Sect. 5.1).

5.2 Run-time Adaptive Energy Management with the Novel Concept

www.manaraa.com

132

Depending upon the chosen set of CI Implementation Versions, the energy
management scheme determines the muting decisions of the temporarily unused
set of CIs (details are explained in Sect. 5.4). The proposed technique uses vari-
ous muting modes that enable leakage energy reduction at the abstraction level
of CIs. The energy management scheme determines at run time which subset of
CIs should be put into which muting mode (Table 5.1) at which time by evaluat-
ing at run time the possible associated energy benefit (a joint function of leakage,
dynamic, and reconfiguration energy). Besides the requirements of the current
and the upcoming hot spots, the weighting factors (see details in Sect. 5.4.4)
of different CIs in a hot spot are given as the input to compute the benefit of a
particular muting mode. The weighting factor of a CI represents the relative con-
tribution of a CI (compared to other CIs) for the accelerated execution of a hot
spot. The weighting factor of a CI in a hot spot is determined by considering the
expected execution frequency of CIs, the time from the start of a hot spot until
their first execution, and the average time between two executions of the same
CI (details are explained in Sect. 5.4.4). The energy minimizing set of CIs and
CI-level muting enables the energy management scheme to dynamically move in
the energy-performance design space at run time depending upon the varying area
and performance constraints.

Depending on the chosen set of CI Implementation Versions and the CI mut-
ing decision, certain Data Paths need to be reconfigured in the powered-on DPCs.
Dynamically reconfigurable processors employ a Data Path Loading Sequencer
to schedule the reconfigurations of the Data Paths required by the current hot spot
[BSKH08]. In case there is no empty DPC, it also determines which Data Path shall
be replaced to load the required Data Path [BSH09b].

5.2.4  �Summary of the Run-time Adaptive Energy Management  
and CI Muting

In this section, the novel concept of CI muting was introduced that raises the ab-
straction level of shutdown to the instruction set level and provides the founda-
tion for the run-time adaptive energy management. An overview of the proposed
adaptive low-power reconfigurable processor along with the design-, compile-, and
run-time steps was discussed in this section. Additionally different components for
run-time adaptive energy management were introduced. Without these components
and various CI muting modes (that enable to dynamically move in the energy-per-
formance design space at run time depending upon the varying area and perfor-
mance constraints), overall energy reduction (considering leakage, dynamic, and
reconfiguration energy) could not be efficiently achieved in an adaptive manner. In
the following, the components for run-time adaptive energy management will be
presented in detail along with the formal problem description, analysis, developed
solutions and algorithms, and their implementation results.

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

133

5.3  �Determining an Energy-minimizing Instruction Set

The previous section presented the overview of different components of the pro-
posed Run-time Adaptive Energy Management Scheme which is the key to real-
ize an adaptive low-power reconfigurable processor architecture. As discussed in
the overview, the energy management scheme considers leakage, dynamic, and
reconfiguration energy to determine/choose an energy-minimizing set of Custom
Instruction (CI) Implementation Versions that fulfill the reconfigurable fabric area
and performance constraints. These constraints may vary at run time due to chang-
ing user requirements, tasks and their priorities, input data etc. For choosing the
energy-minimizing set of CI Implementation Versions, the following information
is required as input: (a) CIs that are expected to be executed in the current hot spot,
(b) the predicted CI execution frequencies (Sect. 2.3.5, p. 35), and (c) the estimated
power consumption of different CI Implementation Versions (Sect. 3.4, p. 63). The
output is exactly one Implementation Version for each of the expected CIs.

5.3.1  �Formal Problem Modeling and Energy Benefit Function

One of the basic tasks of the energy management scheme is to choose a set ‘C’ of CI
Implementation Versions to implement the demanded CIs for an upcoming hot spot
(as shown in Fig. 5.4). The inputs to the algorithm for determining ‘C’ are:

•	 the area constraint of the reconfigurable fabric NDPC_avail,
•	 the performance constraint LHS_constraint, and
•	 a set of CIs expected to be executed in the current hot spot
•	 the predicted execution frequency of the expected CIs F[CIi] (i.e., the number

of the expected CI executions which is obtained by an online-monitoring and
prediction of the CI execution within a hot spot, Sect. 2.3.5).

As discussed earlier in Sect. 5.2, all of these parameters may change at run time. The
following three constraints need to be fulfilled as the fundamental requirements:

Area Constraint:  The chosen CI Implementation Versions can be implemented
with the given amount of DPCs ( NDPC_avail, see Eq. 5.2), i.e., the number of Data
Paths required to implement the chosen set of Implementation Versions should not
exceed NDPC_avail.

� (5.2)

Performance Constraint:  a given performance constraint while minimizing
the energy consumption. In case of the H.264 video encoder (see Sect. 5.2), the
performance constraint is given as the targeted frame rate and the relative perfor-
mance constraints (in percent) of the three major hot spots, resulting in LHS_constraint
in cycles, i.e., the performance constraint of a specific hot spot. Furthermore, the

∣∣∣
⋃

�c∈C
�c
∣∣∣ ≤ NDPC_avail

5.3 Determining an Energy-minimizing Instruction Set

www.manaraa.com

134

expected execution time LcISA_HS_expected of all non-CI instructions (i.e., the instruc-
tions that are executed using the cISA) is given. LcISA_HS_expected is independent from
the chosen Implementation Versions but it needs to be considered to determine the
overall performance. Note, reconfiguration latency is not considered in Eq. 5.3 as
it depends upon the currently available Data Paths (the term �a in Eq. 5.5 corre-
sponds to the currently available Data Paths) and the Reconfiguration Prefetching
(see Sect. 2.3.5). It may happen that some of the Data Paths required by the early-
executing CIs may already be available. In this case, consideration of the recon-
figuration latency in the calculation of LHS_required may violate the LHS_constraint, thus
may lead to a sub-optimal solution. Moreover, the algorithms of the Data Path
Loading Sequencer (see [Bau09; BSKH08] for further details) also result in a per-
formance improvement. Altogether, the currently available Data Paths, the Recon-
figuration Prefetching, and the performance improvement due to the Data Path
Loading Sequencer may already hide the reconfiguration latency. For a chosen set
of Implementation Versions ‘C’ the performance constraint is evaluated by Eq. 5.3.
If the performance constraint cannot be fulfilled then the fastest achievable perfor-
mance is targeted.

�

(5.3)

One Implementation Version per CI:  for each demanded CI one Implementation
Version (potentially also the cISA implementation) is chosen (Eq. 5.4). Note, all CIs
can be executed using cISA, i.e., without any Data Paths (see Sect. 2.3.5, p. 35).

�
(5.4)

When multiple combinations of Implementation Versions fulfill the above three
constraints (i.e., Eqs. 5.2, 5.3, and 5.4) then the goal is to minimize the overall ener-
gy consumption of the hot spot considering leakage, dynamic, and reconfiguration
energy, i.e., minimize Eq. 5.5. There might exist a very low-energy implementation
of a certain CI. However, in order to minimize the overall energy of a hot spot, all
CIs executing in this hot spot needs to be considered along with their expected ex-
ecution frequency (that may change at run time). Thus, various CI Implementation
Versions jointly contribute towards minimizing the overall energy of a hot spot for a
given amount of DPCs ( NDPC_avail) and performance constraint ( LHS_constraint).

�

(5.5)

LHS_required := LcISA_HS_expected +
∑

�c∈C

(F[�c.getCI ()] ∗ �c.getLatency()) ≤ LHS_constraint

∀i : |C ∩ CIi | = 1

ECI_HS_Total=

∑
�c∈C

(F [�c.getCI()] ∗ �c.getLatency() ∗ PCI_dyn(�c))

+PDPC_leak ∗
∣∣∣∣

⋃
∀�c∈C

�c
∣∣∣∣ ∗ LHS_required + EDPC_reconf ∗

∣∣∣∣�a �
⋃

∀�c∈C

�c
∣∣∣∣

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

135

The first summand in Eq. 5.53 denotes the total dynamic energy of the chosen Im-
plementation Versions. Some Implementation Versions use the reconfigurable fabric
and the others use cISA for execution (see Sect. 2.3.5). The predicted execution fre-
quency of the CIs (which is independent of a particular Implementation Version of
the CI) is used to determine the total dynamic energy. For a given amount of DPCs,
an Implementation Version of a CIA with a much higher execution frequency com-
pared to another CIB would consume more dynamic energy compared to an Imple-
mentation Version of CIB. When using the reconfigurable fabric, the dynamic power
consumption—among others—depends on the number of used bus segments (see
Eq. 3.2, Sect. 3.4.2), which itself depends on the Data Path positioning (see Sect. 3.4,
p. 63), i.e., the relative position of the communicating Data Paths on the reconfigu-
rable fabric. Although the actual Data Path positioning is considered for the power
model (Chap. 6) and for simulating the energy consumption for results (Sect. 5.3.3
and 5.4.5, and Chap. 7), an averaged value is used for PCI_dyn(�c) (that abstracts from
the Data Path positioning) in order to be able to choose Implementation Versions
dynamically at run time (i.e., before their actual Data Path positioning is known).

The second summand in Eq. 5.5 stands for the leakage energy of the required DPCs
and for the hot spot execution time ( LHS_required see Eq. 5.3). Bigger Implementation
Versions may result in reduced dynamic energy due to faster execution (by exploiting
more parallelism), but they require more Data Paths. The increased number of Data
Paths to realize bigger Implementation Versions also results in increased leakage pow-
er. On overall, the total leakage energy also depends upon the LHS_required. Therefore,
in some cases a bigger Implementation Versions may result in relatively more leakage
energy (compared to a smaller Implementation Versions) due to increased leakage
power of more Data Paths. In some other cases a bigger Implementation Versions
may result in relatively less leakage energy due to the faster execution, i.e., LHS_required.

The third summand denotes the energy for reconfiguring the currently unavail-
able Data Paths (the term �a in Eq. 5.5 corresponds to the currently available Data
Paths). Depending upon the CIs used in the previous hot spot, some of the Data
Paths required to realize the CI Implementation Versions for the current hot spot
might already be available. Therefore, in Eq. 5.5, the reconfiguration energy for
only the additionally required (i.e., currently unavailable) Data Paths is considered.

5.3.2  �Algorithm for Choosing CI Implementation Versions

When determining the energy minimizing CI set, the run-time nature of the energy
management scheme needs to be considered. Therefore, the following three means
are applied for acceleration:

3  The reactivation energy for one DPC is 3.5 pWs [Te06] while the energy of a hot spot is typi-
cally in multiples of mWs, i.e., approximately 109 times bigger (see Sect. 5.3.3). Therefore, the
DPC reactivation energy overhead is not included in Eq. 5.5, as it does not affect the selection
decision at the abstraction level of computational hot spots.

5.3 Determining an Energy-minimizing Instruction Set

www.manaraa.com

136

a.	 Efficiently traversing the search space
b.	 Simplifying the cost function and incrementally updating the total cost
c.	 Early pruning of the search space

Traversing the search space:  Figure 5.5 shows five CIs (x-axis) from a hot spot
of the H.264 encoder and their corresponding Implementation Versions (y-axis). To
distinguish between the CIs and the traversing sequence, the term ‘levels’ is used
when analyzing the search space. To comply with Eq. 5.4, exactly one Implementa-
tion Version must be chosen at each level. The thick line (in Fig. 5.5) indicates a
path through the levels that fulfills Eqs. 5.2, 5.3, and 5.4. The thin lines indicate the
various alternatives at a certain level. When pruning the design space, it is important
to determine invalid or suboptimal solutions as early as possible. Therefore, the CIs
are sorted in the sequence in which the search space is traversed (x-axis) according
to their importance imp(CIi), i.e., their expected latency improvement4 compared to
their respective cISA execution (averaged over all Implementation Versions). Com-
pared to the opposite sorting (i.e., the CI with minimal imp(CIi) is traversed first)
this reduces the average number of cost function calculations by 76.4× (from 36,766
down to 481) per video frame (in the example of an H.264). This reduction comes
from pruning rather large parts of the search space (while obtaining the same result).

�
(5.6)

Algorithm 5.1 shows the pseudo code of the algorithm for choosing the set of CI
Implementation Versions that minimizes the overall energy consumption of a hot
spot under given area and performance constraints. The pseudo code of the pro-
posed algorithm is explained step-by-step in the following.

Calculating the Cost Function:  The first step is to prepare arrays for the mini-
mum energy consumption and the minimum latency of Implementation Versions
for each level (lines 3–6). The energy consumption of a CI Implementation Version

4  Experiments demonstrate that, in most of the cases, the CI Implementation Version with the fast-
est execution latency is also the one that provides the minimum dynamic energy due to its speedup,
especially in case of tighter performance constraints. However, in terms of reconfiguration energy
it might not always be the best choice.

imp(CIi) := F [CIi] ∗
∑

∀�cij ∈CIi

(�ci_cISA.getLatency() − �cij .getLatency())/ |CIi |

Fig. 5.5   Search space of five
CIs with their implementation
versions at the correspond-
ing levels and the path of the
energy-minimizing instruc-
tion set

Currently
investiga-
ted path

Custom Instructions (CIs)

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

137

1.	 // Input: Area Constraint: NDPC_avail; Performance Constraint: LHS_ constraint; sorted set of demanded CIs:
   CI[Level]; expected CI execution frequency: F[CIi]; sum of the latencies of all non-CIs
   in the hot spot:
   LcISA_HS_expected; DPC leakage power: PDPC_leak; Energy for one reconfiguration: EDPC_reconf

2.	 // Output: Path of chosen CI Implementation Versions pBest and its Energy EBest
3.	 ∀Levels l { // Prepare arrays for the min. energy consumption and the min. latency of
		 Implementation Versions for each level
4.		 LCI_Level_Min[l] ← F [CI [l]]∗MIN{�cij .getLatency()|�cij ∈ CI [l]};
5.		 ECI_Level_DynMin[l] ← F [CI [l]]∗MIN{�cij .getEnergy()|�cij ∈ CI [l]};
6.	 }
7.	 LHS_Min ← LcISA_HS_expected +

∑
∀Level l LCI_Level_Min[l]; 	 // initialize total minimum latency

8.	 EHS_CI_DynMin ←
∑

∀Level l ECI_Level_DynMin[l]; 	 // initialize total minimum energy
9.	 pBest ← ∅; 	 // initializes best so-far determined path
10.	 pcurr ← ∅; 	 // initializes currently investigated path
11.	 Function ExploreLevel (Level l, pcurr , pBest) ;; 	 // starts from Level 1
12.	 BEGIN
13.	 ∀�c ∈ CI [l] { 	 // For all Implementation Versions at the current Level
14.		 NDPC_required ←

∣∣∣
⋃

∀�o∈pcurr∪{�c} �o
∣∣∣ ; 	 // compute the total number of DPCs required to realize

	  �c and all Implementation Versions in pcurr
15.		 if (NDPC_required > NDPC_avail) 	 // Pruning Rule 1: Area Constraints
16.		  continue;
17.		 LHS_T emp ← LHS_Min − LCI_Level_Min[l] + F [CI [l]]∗�c.getLatency();
18.		 if (LHS_T emp > LHS_constraint) 	 // Pruning Rule 2: Perf. Constraints
19.		  continue;
20.		 EHS_CI_DynT emp ← EHS_CI_DynMin − ECI_Level_DynMin[l] + F [CI [l]]∗�c.getEnergy();

21.		 NDPC_reconf ←
∣∣∣�a �

⋃
∀�o∈pcurr∪{�c} �o

∣∣∣ ; 	 // compute the number of DPCs that will be reconfigured
	 to realize pcurr

22.		 EHS_DPC_reconf ← EDPC_reconf
∗NDPC_reconf ; 	 // total reconfiguration energy of pcurr

23.		 EHS_DPC_leak ← PDPC_leak
∗NDPC_required

∗LHS_T emp; 	 // total leakage energy of pcurr
24.		 EHS_CI_minT emp ← EHS_DPC_DynT emp + EHS_DPC_reconf + EHS_DPC_leak

25.		 if (pBest �= ∅ ∧ EBest < EHS_CI_minT emp) // Pruning Rule 3
26.		  continue;
27.		 if (l = LastLevel) { 	 // valid solution found, i.e., an Implementation Version is success fully chosen
28.		 pBest ← pcurr ;
29.		 EBest ← EHS_CI_minT emp;
30.		 return (pBest , EBest);
31.		 }
32.		 // Explore the next level
33.		 LHS_Min ← LHS_T emp; 	 // update the overall minimum latency
34.		 EHS_CI_DynMin ← EHS_CI_DynT emp; 	 // update the overall minimum energy
35.		 (pBest , EBest) ← ExploreLevel (l + 1, pcurr ∪ {�c}, pBest)

36.		 // Restore L and E values for further incremental updates
37.		 LHS_Min ← LHS_Min + LCI_Level_Min[l] − F [CI [l]]∗�c.getLatency();
38.		 EHS_CI_DynMin ← EHS_CI_DynMin + ECI_Level_DynMin[l] − F [CI [l]]∗�c.getEnergy();
39.	 }
40.	 return (pBest , EBest);
41.	 END

5.3 Determining an Energy-minimizing Instruction Set

Algorithm 5.1  Pseudo code of Determining the Energy Minimizing Instruction Set

www.manaraa.com

138

thereby corresponds to an offline-calculated average dynamic energy as discussed
for Eq. 5.5. In the second step, the sums of the array entries are calculated to obtain
the fastest possible execution time LHS_Min and the minimum possible dynamic
Implementation Version energy consumption EHS_CI_DynMin for the hot spot (see lines
7–8), irrespective of the area and performance constraints. Whenever a specific
Implementation Version is chosen at a certain level, these two values are incremen-
tally updated (see lines 17, 33 and 20, 34), i.e., for LHS_Min the minimum-latency
Implementation Version that was initially used to calculate the sum is replaced by
the actually chosen Implementation Version at this level (same procedure for EHS_CI_

DynMin). Therefore, LHS_Min is calculated without the need to iterate through all levels
for one calculation. As it always represents the fastest possible hot spot execution
time at the current level, it is used for pruning (similar for EHS_CI_DynMin).

Pruning Rules:  The following three pruning rules are incorporated to determine
invalid or suboptimal solutions as early as possible:

a.	 Pruning Rule 1: Area Constraint: Parts of the search space that require more
DPCs than what is available are discarded (lines 14–16).

b.	 Pruning Rule 2: Performance Constraint: The above-discussed iteratively-
updated value LHS_Min can directly be used to prune those parts of the search
space that cannot fulfill the performance constraint (see lines 17–19), as for the
not-yet traversed levels the fastest possible Implementation Version execution is
assumed. Additionally, in line 7 the at-compile-time calculated execution time of
the cISA is considered. If no valid solution exists within a given area constraint,
the energy management scheme chooses the set of Implementation Versions that
offers the fastest achievable performance.

c.	 Pruning Rule 3: Sub-optimal Energy Consumption: Whenever the algorithm
finds a valid solution (i.e., successfully chooses an Implementation Version for
the last level) the energy consumption for this solution is then stored for fur-
ther comparison ( EBest in line 29). When searching afterwards for alternative
valid solutions, their energy consumption is compared against EBest (line 25).
Therefore, the incrementally updated dynamic Implementation Version energy
EHS_CI_DynMin and the leakage and reconfiguration energy of DPCs5 need to be
considered (see lines 21–24).

After choosing the energy-minimizing set of CI Implementation Versions, the en-
ergy management scheme determines the muting decision for the temporarily un-
used subset of the Custom Instruction Set (details and algorithm will be discussed
in Sect. 5.4, p. 146). Note: the energy management scheme performs CI muting at
the start of each hot spot to avoid frequent on-off switching of the sleep transistors
(typically the length of a hot spot is several milliseconds6, see Sect. 5.3.3).

5  Due to the irreversible nature of the operator ∪ (used in line 21), they cannot be incrementally
updated like EHS_CI_DynMin.
6  The length of a hot spot is predicted from the latency values of different CIs used in the hot spot
and their corresponding expected execution frequencies (as predicted by the online-monitoring
Sect. 2.3.5).

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

139

5.3.3  �Evaluation and Results for Energy-Minimizing  
Instruction Set

Now the adaptive energy management scheme will be evaluated for various fabrica-
tion technology nodes using the H.264 video encoder application (as discussed in
Chap. 4). The parameters and their corresponding values (for different fabrication
technologies) that are used as the basic input in the following experiments are pre-
sented in Table 5.2 with their corresponding sources of information.

5.3.3.1  �Evaluating the Adaptive Energy Management Scheme on  
Different Technologies

Figure 5.6 shows the energy-performance design spaces in which the Adaptive En-
ergy Management Scheme moves at run time—for a certain technology—to achieve
the overall minimum energy for a given performance and area constraint. In order
to show the technology-independent nature of the energy management scheme (i.e.,
it is beneficial for various fabrication technologies), it is evaluated for four different
technologies under various performance and area constraints. Since leakage energy
is dominant in 65 nm and 90 nm, the energy management scheme may choose a
different set of CI Implementation Versions for 65 nm and 90 nm (more variation
in regions E-4 and E-7) compared to 150 nm (E-9). However, due to low-power
optimizations in the new Virtex-6 (40 nm and 40 nmL, [Kle10]) the overall leakage
energy is significantly reduced, therefore, the energy management scheme makes a
different decision in choosing the energy minimizing instruction set for 40 nm and
40 nmL (as shown by different energy variations in E1-E3). 40 nmL is a version
of Virtex-6 that operates at a lower voltage, therefore, the overall energy is further
reduced compared to 40 nm (E3).

Figure 5.6a–d contain a flat region showing similar minimum energy points for
different performance constraints. This is because of two reasons: (1) either the area
(i.e., reconfigurable fabric) is insufficient or (2) the achieved performance is greater
than the performance constraint in order to minimize the leakage energy that may
increase due to the slow execution. Note: the performance improvement comes in
discrete steps, as a set of CIs collectively results in a speed up of the hot spot. A
similar behavior can be observed in E-11 for 150 nm.

There is an interesting scenario that shows the efficiency of the energy man-
agement scheme: In E-5, the overall energy is very high (as leakage is dominant)
because of a longer execution time. As soon as more DPCs are available the energy
management scheme decides to switch to a faster execution (although not required
from a performance point of view) thus cutting down the leakage energy signifi-
cantly (E-6). In short, it can indeed be beneficial to pay an additional reconfigura-
tion to reduce the leakage energy. However, the scenario is changed for 40 nm and
40 nmL due to device-level leakage optimizations, Fig. 5.6 (E1, E3).

5.3 Determining an Energy-minimizing Instruction Set

www.manaraa.com

140

Ta
bl
e
5.
2  

Pa
ra

m
et

er
s a

nd
 e

va
lu

at
io

n
co

nd
iti

on
s w

ith
 th

ei
r c

or
re

sp
on

di
ng

 re
fe

re
nc

e
so

ur
ce

s
A

ttr
ib

ut
es

40
 n

m
L*

*

(lo
w

 p
ow

er
)

40
 n

m
**

65
 n

m
90

 n
m

15
0

nm
So

ur
ce

Vo
lta

ge
 [V

]
0.

9
1.

0
1.

0
1.

2
1.

5
[X

il1
0a

]
Re

co
nf

ig
ur

ab
le

Fa
br

ic
FP

G
A

V
irt

ex
 6

 (−
1L

)
V

irt
ex

 6
 (−

1)
V

irt
ex

-5

xc
5v

lx
85

V
irt

ex
-4

xc

4v
lx

80
V

irt
ex

-I
I

xc
2v

60
00

To
ta

l s
iz

e
[C

LB
s]

–
–

64
80

*
89

60
84

48
[X

il1
0a

]
To

ta
l l

ea
ka

ge
 p

ow
er

 [W
]

–
–

1.
29

7
0.

85
4

0.
06

8
[X

il1
0b

]
M

in
. d

yn
am

ic
 p

ow
er

 [W
]

–
–

0.
49

2
0.

48
1.

2
[X

il1
0a

]
Si

ze
 o

f 1
 D

PC
 [C

LB
s]

68
*

68
*

68
*

96
96

[B
SH

08
a]

Le
ak

ag
e

po
w

er
 o

f 1
 D

PC
 [m

W
]

6.
99

9.
46

13
.5

1
9.

15
0.

77
[X

il1
0b

]
D

yn
am

ic
 p

ow
er

 sc
al

in
g

fa
ct

or
0.

22
9

0.
28

7
0.

41
0.

4
1

[X
il1

0a
]

cI
SA

Si
ze

 o
f L

eo
n

C
or

e
an

d
R

un
-T

im
e

M
an

ag
em

en
t S

ys
te

m
 [C

LB
s]

19
80

*
19

80
*

19
80

*
28

16
28

16
[B

SH
08

a]

FP
G

A
-to

-A
SI

C
: L

ea
ka

ge
 [m

W
]

8.
20

1
11

.1
00

15
.8

52
10

.7
36

0.
90

7
[K

R
07

]
Te

ch
no

lo
gy

 sc
al

in
g

fa
ct

or
(0

.3
4)

(0
.3

4)
(0

.4
45

)
(0

.5
83

)
(0

.7
63

)
[B

TM
00

]
*T

he
 V

irt
ex

-5
/6

 in
te

rn
al

 C
LB

 C
om

po
si

tio
n

is
 D

iff
er

en
t C

om
pa

re
d

to
 P

re
vi

ou
s F

PG
A

s
**

Th
e

Po
w

er
 V

al
ue

s a
re

 S
ca

le
d

fr
om

 V
irt

ex
-5

 a
cc

or
di

ng
 to

 [K
le

10
]

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

141

Figure 5.7 presents the breakdown of energy consumption for the four technolo-
gies when encoding at 35 fps with a different amount of DPCs. Figure 5.7 shows that
in case of 150 nm dynamic and reconfiguration energy make up for the major part
of the total energy consumption. When moving from 4 to 20 DPCs the performance
improvement comes at the cost of additional reconfiguration energy. For 65 nm and

Fig. 5.6   Energy-performance design spaces: evaluation of the energy minimization space using
the adaptive energy management scheme under various area and performance constraints for four
fabrication technologies for an encoding of 40 QCIF (176 × 144) frames

5.3 Determining an Energy-minimizing Instruction Set

www.manaraa.com

142

90 nm, when moving from 5 to 6 DPCs there is a decrease in the total energy as for
faster execution the leakage energy has been reduced significantly (as also shown
in E-6 of Fig. 5.6). From 7–20 DPCs, the leakage energy is changing due to each
additional powered-on DPC. However, in case of 40 nm and 40 nmL, the reconfigu-
ration energy and leakage energy are comparable. Here due to reduction of leakage
energy in 40 nm and 40 nmL, the energy management scheme chooses a different
energy-minimizing set of Implementation Versions compared to the case of 65 nm.

5.3.3.2  �Evaluating the Adaptive Energy Management Scheme for Encoding
of different Resolutions

Figure 5.8 presents the energy-performance design spaces for encoding of two dif-
ferent resolutions at 40 nm technology. The encoding of different video resolutions

Fig. 5.7   Comparison of energy components in different fabrication technologies under various
area constraints

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

143

results in different computational requirements. QCIF resolution (176 × 144 pixels)
has 2× more Macroblocks (MBs) to encode compared to SQCIF resolution (128 × 96
pixels). Therefore, in order to meet same frame per second performance, QCIF re-
quires more DPCs compared to SQCIF, which directly corresponds to increased
energy. The fact is notable in the Fig. 5.8 (L4). In case of SQCIF the performance
constraint is met with relatively less number of DPCs compared to QCIF (see L2).
When comparing 40 nm and 40 nmL, the energy-performance design spaces are
almost similar, as the only difference is in the operational voltage that reduces both
leakage and dynamic power.

Figure 5.9 shows the breakdown of energy at the time-frame level (each time-
frame = 0.05 MCycles) along with the number of CI executions for QCIF@30 fps
using 65 nm. It shows the contribution of different energy components at different
time instances. At the start of the Motion Estimation (ME) hot spot there occur sev-
eral reconfigurations. Thus, the reconfiguration energy is dominant (Label-A: until
0.2 MCycles). While reconfiguring the Data Paths for the CIs of ME, the number of
CI executions per time frame is increasing gradually that also demonstrates a gradu-
al acceleration of the ME hot spot. During the execution of the ME hot spot (Label-
B: 0.2–1.15 MCycles) the leakage energy is dominant. In 1.15 MCycles the ME hot

Fig. 5.8   Comparing energy-performance design spaces for different video resolutions when using
the energy management scheme under various area and performance constraints for an encoding
of 60 video frames

5.3 Determining an Energy-minimizing Instruction Set

www.manaraa.com

144

spot has finished executing and the Data Paths for the EE (Encoding Engine) hot
spot start reconfiguring. It is also notable in Fig. 5.9 that only few reconfigurations
are performed for the EE hot spot. It is because of the reason that the CIs in EE hot
spot share Data Paths from the previous ME hot spot. These shared Data Paths are
already available in the DPCs and no additional reconfiguration is required.

Note: the leakage energy in LF hot spot is less compared to that in the ME
and EE hot spots due to the muting of the temporarily unused set of CIs (details
of CI muting will be discussed in Sect. 5.4). In this case, only two Data Paths are
used and the remaining ones are power-gated to save leakage. Since the time be-
tween LF (Loop Filter) and next frame ME is small, the reconfiguration Energy is
dominant (Label-C) within this region. A single frame encoding finishes in 1.65
MCycles.

5.3.3.3  �Hardware Implementation

The adaptive energy management scheme is implemented on a Xilinx Virtex-II
based hardware prototype (see Fig. 6.1 in Sect. 6.1) that was also used for the power
measurements (see the hardware implementation results in Table 5.3). The recur-

Fig. 5.9   CI Execution results for 30 fps on 65 nm showing a detailed breakdown of energy compo-
nents highlighting the contribution of reconfiguration and leakage energy. The lower graph shows
the detailed execution pattern of various CIs executing in different hot spots of the H.264 video
encoder along with total energy consumption

ME

CISA_leak

E
n

er
g

y
[m

W
s]

E
n

er
g

y
[m

W
s]

 (
L

in
e)

CISA_dyn

DPC_leak

Reconf_dyn

Label-A: Point of
Reconfiguration

Label-B: Leakage is
dominant during
ME Execution

Label-C: Reconfigurations
for ME Hot Spot

CI_dyn

0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0

500

1000

1500

2000

2500

3000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Ifbsfour
mchzfour
satdfour

dctfour
httwo
sadsixteen

Time [MCycles]

N
u

m
b

er
 o

f
C

I E
xe

ci
ti

o
n

 (
B

ar
s)

Energy per TF

EE LF ME

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

145

sive call in the pseudo code (Algorithm 5.1) is thereby implemented in an iterative
way and an array stores the currently explored Implementation Version for each
level. The logic is implemented in form of a state machine with 17 states, where
eight states are responsible for calculating the cost function and the pruning condi-
tions. One complete calculation of cost function requires on average 12 cycles. The
overall average performance overhead is 5,772 cycles per video frame (for 481
calls of cost function, as mentioned in Sect. 5.3), which is insignificant. The overall
power overhead of the energy management scheme is 42.237 mW (41 mW dynam-
ic + 1.237 mW leakage) for a Xilinx Virtex-II based hardware prototype. However,
the hardware for the scheme is only used at the start of each hot spot for choosing
the set of CI Implementation Versions and during the hot spot execution it is not
used. Therefore, the overall energy overhead is insignificant compared to its energy
benefit. Moreover, for the final system an ASIC-based implementation is foreseen
which would result in much lesser power overhead.

5.3.4  �Summary of Energy Minimizing Instruction Set

The adaptive energy management scheme chooses an energy-minimizing set of CI
Implementation Versions for each computation hot spot such that this set fulfils the
reconfigurable fabric area and performance constraints. The goal is to minimize the
overall energy of the hot spot while considering leakage, dynamic, and reconfigura-
tion energy along with the predicted CI execution frequency. In order to expedite
the algorithm (especially when considering its run-time nature), three means are ap-
plied. These are (a) Efficiently traversing the search space, (b) Simplifying the cost
function and incrementally updating the total cost, (c) Early pruning of the search
space to determine invalid or suboptimal solutions as early as possible. Evaluation
for various fabrication technologies showed that the proposed scheme moves in the
energy-performance design space at run time and it is equally beneficial for various
technologies, various performance constraints, and changing amount of available
reconfigurable fabric area (i.e., available DPCs). After choosing the energy-mini-
mizing set of CI Implementation Versions, the energy management scheme deter-
mines the muting decisions for the temporarily unused set of CIs, i.e., which muting
mode is beneficial for which subset of CIs when considering leakage, dynamic, and
reconfiguration energy.

5.3 Determining an Energy-minimizing Instruction Set

Implementation details

#Slices 615
#LUTs 883
#MULT18 × 18 7
Gate Equivalents 39,794
Clock delay [ns] 10.371

Table 5.3   Hardware imple-
mentation results for the
energy management scheme
on the RISPP prototyping
platform (see Fig. 6.1 in
Sect. 6.1)

www.manaraa.com

146

5.4  �Selective Instruction Set Muting

As discussed earlier in Sect. 5.2.1, the adaptive energy management scheme em-
ploys a Selective Instruction Set Muting technique that shuns the leakage energy at
the abstraction level of Custom Instructions (CIs), i.e., an instruction set oriented
shutdown. When targeting dynamically reconfigurable processors, it is hard to de-
termine at compile time which CIs will be reconfigured on which part of the recon-
figurable fabric (i.e., in which DPCs). As a result, the hardware-oriented shutdown
schemes [Ge04; MM05]—that monitor the idle usage/state of a particular hardware
to issue the shutdown signal—suffer from the limitation of inflexibility and are
highly dependent upon the underlying shutdown policy. Contrarily, the instruction
set oriented shutdown (i.e., CI-level muting) relates leakage energy to the execution
context7 of an application to enable a far higher potential for leakage energy sav-
ings. Considering the power-shutdown infrastructure (as discussed in Sect. 5.2.2),
several CI muting modes (see Table 5.1 in Sect. 5.2.1) can be defined, each leading
to particular leakage energy savings. These muting modes are:

a.	 Non-Muted CI (NM-CI): CI is active and operational.
b.	Virtually-Muted CI (VM-CI): CI cannot be executed due to the powered-off

Logic. No reconfiguration is required in order to deploy this CI as its Configu-
ration SRAM is kept powered-on. It is beneficial when a subset of CIs is not
demanded for a rather short period.

c.	 Fully-Muted CI (FM-CI): CI is not operational, as both Logic and Configura-
tion SRAM are powered-off. A reconfiguration is required (that costs reconfigu-
ration energy and latency) to deploy this CI. It is beneficial when a subset of CIs
is not demanded for a rather long period.

After the energy-minimizing set of CI Implementation Versions is chosen (Sect. 5.3),
the muting modes are determined for the temporarily unused subsets of CIs. Then
the challenging question arises, which subset of the CI set shall be muted at what
time and in which mode (VM-CI or FM-CI, see Table 5.1) under run-time varying
application contexts in order to minimize the overall energy, considering the trad-
eoff between leakage energy saving and reconfiguration energy overhead. This de-
cision depends upon the execution length and the requirements of the computational
hot spots (during which different CIs are used for the application acceleration).
These parameters may vary at run time depending upon the application execution
properties, and the area and performance constraints (i.e., more or less reconfigu-
rable fabric is required to accelerate hot spots), as it will be motivated in Sect. 5.4.1.
Therefore, the CI muting decision cannot be determined at compile-time.

In the following, the importance of different muting modes (VM-CI and FM-CI)
and their relationship to the muting duration (i.e., in which scenario which muting
mode is beneficial) are discussed with the help of simple motivational scenarios in
Fig. 5.10.

7  Instead of idle hardware state monitoring, idle periods of CI usages (i.e., temporarily unused
subset of CIs) are exploited for the purpose of energy savings.

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

147

5.4.1  �Problem Description and Motivational Scenarios

Various challenging questions arise given the three muting modes from above: For
instance, whether VM-CIs or FM-CIs provide more energy reduction when both
leakage energy and reconfiguration energy are considered. This is reflected by the
following equation (Eq. 5.7) where the decision of a muting mode depends upon the
execution length of a hot spot (i.e., LHS):

� (5.7)

Additionally, it needs to be clarified whether this decision can be determined stat-
ically ([Ge04, MM05]) or whether it requires a dynamic decision. As it will be
shown later on, this depends on a specific run-time scenario (i.e., application’s ex-
ecution context).

Figure 5.10 shows three different run-time scenarios and compares the energy
requirements of VM- and FM-CIs. It is noticeable that the energy requirements of
FM-CIs are significantly lower for most of the time. However, when a FM-CI is
demanded again for executing a hot spot, its muting mode is switched to NM-CI. It
increases the energy requirements significantly due to the demanded reconfigura-
tion of these FM-CIs (see the 2nd addend on the right hand side of Eq. 5.7). This
fact is noticeable in Fig. 5.10a where the muting duration of FM-CIs is too short to
amortize the reconfiguration overhead PDPC_reconf * TDPC_reconf. An alternate scenario
can also been seen in Fig. 5.10a where the leakage energy in VM-CIs is large com-
pared to the reconfiguration energy of FM-CIs. Such a scenario may result due to a
higher Vdd in order to support a higher clock frequency, which is required to fulfill
the performance constraints.

Figure 5.10b shows the scenario, where the leakage energy of the VM-CIs is
higher than that of FM-CIs as the muting duration is too long (e.g., due to relaxed
user constraints). Therefore, the CIs in the fully-muting mode amortize the recon-
figuration overhead. Actually, the muting duration for CIs varies due to the chang-
ing application contexts as a result of (1) varying control flow of the application,

PVM_CIs ∗ LHS
?
<PFM_CIs ∗ LHS +

∑
(PDPC_reconf ∗ TDPC_reconf)

Fig. 5.10   Comparing the energy requirements of virtually- & fully-muted CIs for two scenarios

Time

T
o

ta
l E

n
er

g
y

T
o

ta
l E

n
er

g
y Longer muting duration: CIs are

not used for a rather long period

CIs not demanded in this hot spot

Time

More leakage,
e.g. due to
higher Vdd

CIs demanded again

Putting CIs in Fully
Muted Mode (FM-CI)

Putting CIs in Virtually-
Muted Mode (FM-CI)

Higher energy due to the
Reconfiguration for FM-CIs

a

b

5.4 Selective Instruction Set Muting

www.manaraa.com

148

(2) changing application priorities in multi-tasking systems (varying the amount of
available reconfigurable fabric assigned to it), and (3) changing user preferences
(e.g., performance constraints, thus changing hot spots’ execution length). Hence, it
is not possible to predict the energy requirements of VM-CIs at compile time.

The three scenarios in Fig. 5.10 demonstrate that it is typically not possible to
decide Eq. 5.7 at compile time. Therefore, a run-time Selective Instruction Set Mut-
ing technique is desirable for adaptive low-power reconfigurable processors. It de-
termines at run time which subset of CIs should be put into which muting mode
(Table 5.1) at what time. For this, it evaluates the possible associated energy benefit
(a joint function of leakage, dynamic, and reconfiguration energy) at run time.

5.4.2  �Operational Flow for Selective Instruction Set Muting

The proposed technique evaluates a possible energy benefit (a function comprising
leakage, dynamic, and reconfiguration energy, see Sect. 5.4.3) of different CIs to
select an appropriate muting mode for the corresponding DPCs at run time8. Fig-
ure 5.11 presents a time line showing the execution sequence of previous, current,
and upcoming hot spots along with the point of time where the CI muting mode is
selected.

Figure 5.12 presents the flow of the CI muting technique. It is triggered ahead of
a hot spot execution. The key inputs are:

•	 a list of Data Paths that are available from the previous hot spot (�p) and
•	 lists of Data Paths that are required by the current and the upcoming hot spots

(�c and �n, see Fig. 5.13).

The algorithm returns non-muted, virtually-muted, and fully-muted DPCs for the
current hot spot ( DPCNM, DPCVM, DPCFM). The four major steps are:

Step 1: The DPCs to fulfill the Data Path requirements of the current hot spot (see
Fig. 5.13) are kept in non-muted mode ( DPCNM, i.e., DPCs in active state). After-

8  As mentioned in Sect. 5.2.2, in order to set a particular muting mode for a CI, the control signals
(as specified in Table 5.1) for the sleep transistors (for Logic and the Configuration SRAM) are
issued to all DPCs of this CI.

5 Adaptive Low-power Reconfigurable Processor Architecture

Fig. 5.11   Time-line showing the execution sequence of hot spots and the situation for a CI muting
decision

www.manaraa.com

149

wards, the Data Paths required for �c are checked if they are already available in
DPCs (i.e., common Data Paths in �c and �p). If yes, then these DPCs are added
to the DPCNM list.

Step 2: Afterwards, the requirements of the upcoming hot spot are predicted (see
details in Sect. 5.4.4) and virtually-muting DPCs ( DPCVM) are determined. At the

Fig. 5.12   Flow for selecting a muting mode for the custom instruction (CI) set

DP c

Stop

Compute maximum
number of DPVM

If the DPC demand of the
Current Hot Spot is fulfilled

Mute-Mode Manager

Mute-Mode Manager

5.4 Selective Instruction Set Muting

Fig. 5.13   Venn diagram showing the data path requirements of previous, current, upcoming hot
spots

www.manaraa.com

150

start of the current hot spot, the Data Paths that are available from the previous
hot spot are compared to the Data Paths required by the upcoming hot spot.

–	 If a Data Path is currently available, not needed for the current hot spot, but
needed again for the upcoming hot spot, it is a candidate for the virtually-
muting mode (Fig. 5.13) and it is added to the candidate list.

–	 Then, the maximum number of virtually-muted Data Paths ( DPVM) is com-
puted by considering the requirements of the current and the upcoming hot
spots and the total number of DPCs.

–	 However—depending upon the requirements of the current hot spot—the
maximum number of DPVM may be smaller than the total number of virtually-
muting mode candidates as some of the DPCs may need to be reconfigured
to fulfill the performance requirements of the hot spot. Therefore, the ‘de-
termineDPVM’ function (details in Sect. 5.4.3) evaluates the energy benefit
of all candidates for the virtually-muting mode. It then chooses the one that
provides the highest energy benefit among all candidates.

–	 If the energy benefit (no additional reconfiguration required) overcomes the
overhead (larger leakage) then the DPC of DPVM are added into the DPCVM
list. Alternatively, no DPC is put into the DPCVM list.

–	 The function ‘determineDPVM’ is iteratively executed until maximum num-
ber of DPVM is zero.

�Step 3: If some of the Data Paths required by the current hot spot are not available,
then more DPCs are kept in non-muted mode as they will be reconfigured to
fulfill the requirements of the current hot spot. These DPCs are added into the
DPCNM list. Those DPCs where the non-muted mode is not beneficial or which
are not needed in the current and the upcoming hot spots are put into the fully-
muted mode (i.e., added to the DPCFM list), as they may be used rather late dur-
ing the application execution flow.

�Step 4: In the last step, DPCNM, DPCVM, DPCFM lists are sent to the Mute-Mode
Controller (Sect. 5.2.2) that issues the control signals (see Table 5.1) for the
sleep transistors (for Logic and the Configuration SRAM).

Now, the ‘determineDPVM’ (from Fig. 5.12) function (which is used for computing
the energy benefit of muting and for identifying a virtually-muted DPC) is discussed
in the following.

5.4.3  �Analyzing the Energy Benefit Function of Muting

Algorithm 5.2 shows the pseudo code for identifying one Data Path for virtually-
muting ( DPVM) out of all virtually-muting candidates. The key inputs are: virtually-
muting candidates (�s), Data Paths required for the upcoming hot spot (�n), set of CI
Implementation Versions that are expected to be required for the upcoming hot spot
( CInext), expected execution time of the current hot spot ( tExeccurr_HS), and a table of
the CI weighting factors (ωCI).

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

151

Each Data Path in the candidate list �s is evaluated for the energy benefit (lines
7–16). The Data Path that provides the highest energy benefit among all candidates
�s is then chosen as the one DPVM (lines 13–15). There are four parts for the energy
evaluation (line 12):

Reconfiguration Energy Benefit (ERecBenefit, line 8):  When a hot spot starts execu-
tion, its Data Paths are reconfigured into DPCs. In case a Data Path is still available
after the execution of the current hot spot, one less reconfiguration is required for
the upcoming hot spot. Thus, a DPVM provides an energy benefit of one saved recon-
figuration. Moreover, it also results in a latency improvement of one reconfigura-
tion (approximately 0.63 ms) compared to the fully-muted DPC.

Leakage Energy Benefit (ELeakBenefit, line 9):  As the DPVM will be available when
the upcoming hot spot starts executing, the CIs of that hot spot may execute in a
faster Implementation Version compared to the case when it is not available. This
results in a performance improvement for the upcoming hot spot compared to the
fully-muted Data Path (see Eq. 5.8). Each DPVM may expedite multiple CIs, where
each CI has a different weighting factor (ωCI, see Sect. 5.4.4) depending upon its
execution frequency and execution pattern in the hot spot. Faster execution of the
upcoming hot spot will reduce the overall leakage energy of both the core processor
and the reconfigurable fabric. Therefore, leakage savings are computed for each
virtually-muting candidate by considering ωCI of the CIs that are accelerated by
this candidate.

5.4 Selective Instruction Set Muting

Algorithm 5.2  Pseudo Code for Finding a Data Path for Virtually-Muting Mode

1.	 Function determineDPVM
(�t, �s, �n, CInext , ωCI , tExeccurr_HS

)

2.	 // Input: �t: temporary copy of currently required Data Paths, �s: virtually-muting can-
didates, �n: Data Paths required for the upcoming hot spot, CInext: set of Implementation
Versions for CIs that are expected to be required for the upcoming hot spot, tExeccurr_HS:
expected execution time of the current hot spot, ωCI: a table of the CI weighting factors
(Figure 5.14)

3.	 // Output: DPVM: virtually-muted Data Path
4.	 BEGIN
5.	 bestE

benefit
 = 0; 	 // initialize the energy benefit

6.	 DPV M ← NULL; 	 // initialize virtually muted Data Paths
7.	 ∀DP ∈ �s { 	 // determine one Data Path from candidate list
8.		 EReconf Benef it = PDPC_reconf

∗TDPC_reconf ;
9.		 ELeakBenef it = LBenef it (�t , DP)∗(PDPC_leak

∗ |�n| + PcISA_leak);
10.		 ELeakOverhead = tExeccurr_HS

∗PV M_DPC_leak;
11.		 dynEdiff = dynEdiff (�t , DP); 	 // see Eq. 5.9
12.		 EBenef it = EReconf Benef it + ELeakBenef it − ELeakOverhead + dynEdiff ;
13.		 if (Ebenef it > bestEbenef it) {
14.		 bestEbenef it = Ebenef it ; DPV M = DP ;
15.		 }
16.	 }
17.	 return DPV M ;
18.	 END

www.manaraa.com

152

� (5.8)

Leakage Energy Overhead (ELeakOverhead, line 10):  Leakage occurs in a virtually-
muted DPC (due to the powered-on Configuration SRAM) for the whole duration
of the current hot spot execution. Therefore, this overhead needs to be considered
for the energy benefit function (line 12).

Dynamic Energy Difference (dynEdiff, line 11):  Different Implementation Ver-
sions of a CI vary in their dynamic power and energy consumption. Therefore, a
DPVM may bring an energy benefit or overhead due to a different CI Implementation
Version as shown in Eq. 5.9.

� (5.9)

The computational complexity for calculating the energy benefit is
O(numMaxDPVM · | �S|). Figure 5.13 shows that |�s| is typically much smaller than
the total number of Data Paths that fit onto the reconfigurable fabric at a certain
time.

Note: the wakeup energy for virtually-muted and fully-muted DPC are 3.5 and
7.0 pWs (for the sleep transistor design of [Te06]), respectively. However, the en-
ergy for reconfiguring one DPC is 147 µWs, i.e., more than 106 times bigger (see
details in Sect. 6.3, p. 164). Therefore, the DPC reactivation energy overhead is not
included in the cost function, as it does not affect the muting decision.

5.4.4  �Hot Spot Requirement Prediction: Computing Weighting
Factors for CIs

Different CIs of a hot spot may have different execution patterns (see Fig. 5.14).
These execution patterns depend upon the following three parameters:

•	 expected execution frequency of CIs
•	 the time from the start of a hot spot until their first execution
•	 the average time between two executions of the same CI

The expected execution frequency is predicted by a light-weight online monitoring
scheme (Sect. 2.3.5, p. 35), while the other two parameters are obtained using an
average case from offline-profiling. Depending upon the above three parameters a
weighting factor (ωCI) is computed for each CI. It represents the relative contribu-
tion of a CI (compared to other CIs) for the accelerated execution of a hot spot.
To calculate ωCI , the time line is partitioned into multiple slots, each equal to the
reconfiguration time of a Data Path. Since the performance of a CI may only change

LBenefit (�p, DP) =
∑

�x∈CInext




ωCI(�x.CI())∗(

�x.CI().Fastest(�p).Latency()−
�x.CI().Fastest(�p + DP).Latency()

)




dynEdiff(�p, DP) =
∑

�x∈CInext




ωCI(�x.CI())∗(

�x.CI().Fastest(�p).E()−
�x.CI().Fastest(�p + DP).E()

)




5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

153

after a reconfiguration is completed, the number of CI executions ( #CIExecTSi) is
computed for each time slot TSi independently. Similarly, CIs executing in the ear-
lier time slots have more weight than the later ones in the same hot spot (denoted by
FactorTSi). Considering there are ‘n’ time slots, ωCI of a CI ‘X’ can be computed
as shown in Eq. 5.10.

� (5.10)

An example can be found in the Motion Estimation hot spot of the H.264 encoder
that requires two CIs: Sum of Absolute Differences (SAD) and Sum of Absolute
Hadamard Transformed Differences (SATD). In the control flow, first SAD is re-
quired and then SATD, therefore the SAD CI has a higher importance for the earlier
time slots. SATD becomes important in the later time slots. Let us assume that ME
is the hot spot that is executed next. If only one DPC shall not be used in the current
hot spot, but two virtually-muting candidates are available (containing Data Paths
that are beneficial for the Motion Estimation), then it may be more beneficial to
maintain the Data Path for SAD (i.e., setting it to virtually-muted mode) instead of
SATD.

The complexity for online computation of the CI weighting factors is
O(#CIs × n) per hot spot (‘n’ is the number of virtually-muting candidates, which
is bound by #DPCs) with a memory overhead of O(#CIs) to store the monitoring
data (three 32-bit words per CI).

5.4.5  �Evaluation of Selective Instruction Set Muting

Figure 5.15 illustrates the box-plot summary (over 408 different experiments of dif-
ferent performance and area constraints) of the benefit of using multiple CI muting
modes and Selective Instruction Set Muting. The comparison is performed between
the energy management scheme with one given muting mode (i.e., Fully Muting)
and Selective Instruction Set Muting (where the decision of Fully or Virtually mut-
ing is evaluated at run time). Figure 5.15 shows that Selective Instruction Set Mut-
ing provides an energy benefit of up to 22% (on average 12%).

ωCI(X) =
∑n

i=1
(#XExecT Si ∗ FactorT Si)

Fig. 5.14   Calculating the weighting factor for custom instructions w.r.t. the application context

hot spot
starts
[t = 0]

CIA executes faster after
its data path is reconfigured

CIA Executions Point of completion of a Reconfiguration

Time until first
CIA execution

CIB Executions

Avg. Distance between
two CIB Executions

Time until first CIB execution

TS1 TS2 TS3 TS4 TS5

Time

...

5.4 Selective Instruction Set Muting

www.manaraa.com

154

5.4.5.1  �Overhead of the Selective Instruction Set Muting Technique

The main compute-intensive part of the CI muting technique is the ‘determine
DPVM’ function (Algorithm 5.2) that determines the DPVM. The energy benefit cal-
culation (in lines 8–15, Algorithm 5.2) consumes 8.82 nWs, 11.56 nWs, 21.81 nWs
for 40 nm, 65 nm, 90 nm, respectively. For ‘n’ virtually-muting candidates there are
‘n( n − 1)’ energy benefit calculations. For the H.264 video encoder application—in
worst case—there are at most four candidates. The overall energy overhead of the
CI muting technique is 105.89 nWs, 138.71 nWs, 261.68 nWs for 40 nm, 65 nm,
90 nm, respectively. However, the energy savings of the proposed technique are in
multiples of mWs, i.e., more than 105 times bigger. Therefore, the energy overhead
is negligible compared to the achieved energy savings.

The worst-case performance overhead of the CI muting technique is 1,356 cycles
for the above-discussed experiments, which is negligible in comparison to the hot
spot execution time (<<1%, depending on performance constraints). The CI mut-
ing technique is envisioned as executing on a Microblaze processor (a soft core
provided by Xilinx) that along with monitoring and the reconfiguration controller
requires only 5,564 slices in the current Xilinx Virtex-4-lx160 FPGA based proto-
type of the RISPP processor.

Note: the CI muting technique also requires a power-shutdown infrastructure
in FPGAs to realize energy-aware adaptive computing that incurs additional area
overhead. Pika [Te06] (a Xilinx low power FPGA research project) states an 8%
area increase due to their power-shutdown infrastructure. However, they provide
one sleep transistor per CLB, while in the envisioned power-shutdown infrastruc-
ture (see Sect. 5.2.2) two sleep transistors per DPC are required. Therefore, a much
smaller area overhead is envisioned. Currently, such infrastructure is not available
in today’s commercial FPGAs. It would be far more energy efficient if FPGA ven-
dors would provide a basic infrastructure that is necessary to exert the proposed CI
muting technique.

5.4.6  �Summary of Selective Instruction Set Muting

The Selective Instruction Set Muting technique uses various muting modes (requir-
ing a power-shutdown infrastructure) that enable leakage energy reduction at the
abstraction level of CIs. The CI muting technique selects one out of three muting

Fig. 5.15   Summary of energy benefit of using selective instruction set muting

20

25

10

15

5

0
40 nm 40 nmL 65 nm 90 nm

Fabrication Technology

E
n

er
g

y
R

ed
u

ct
io

n
 [

%
]

Up to 22% Energy Reduction due to
Selective Instruction Set Muting

100%-Quartile
(Maximum)

75%-Quartile (75% of
the values are smaller)

25%-Quartile (25% of
the values are smaller)

50%-Quartile
(Median)

0%-Quartile
(Median)

Average

Summary of 408 experiments
per fabrication technology

5 Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

155

modes for each CI in the unused subset of CIs considering leakage as well as re-
configurable energy under run-time varying situations and constraints. The energy
benefit function is evaluated at run time for each muting candidate which is a joint
function of leakage, reconfiguration, and dynamic energy. Besides the execution
length and requirements of the current and the upcoming hot spots, the weight-
ing factors of different CIs (representing their relative contribution) in a hot spot
are given as the input to compute the benefit of a particular muting mode. These
weighting factors are determined by considering the expected execution frequency
of CIs, the time from the start of a hot spot until their first execution, and the aver-
age time between two executions of the same CI. The experimental evaluation for
various fabrication technology nodes corroborate the potential for far higher energy
savings of dynamically reconfigurable processors which currently still suffer from
a low efficiency as far as energy is concerned.

5.5  �Summary of Adaptive Low-power Reconfigurable
Processor Architecture

Once the energy requirements are reduced at the application/algorithm level, pro-
cessor level energy management scheme needs to further trim the overall energy.
First, different motivational scenarios were analyzed for different performance con-
straints of the video encoding application to highlight the energy reduction poten-
tial. Afterwards, a run-time energy management scheme is introduced. This scheme
employs the novel concept of instruction set level muting that raises the abstraction
level power-shutdown to the instruction set architecture. By doing so, it provides a
much higher potential for energy reduction. Different muting modes are proposed
considering a power-shutdown infrastructure that supports the independent shut-
down control of the Logic and Configuration SRAM of the reconfigurable fabric.
In the first step, the energy management scheme determines the energy minimiz-
ing instruction set while exploring the tradeoff related to the leakage, dynamic,
and reconfiguration energy under run-time varying scenarios of performance and
area constraints. It evaluates that for a given scenarios, whether it is beneficial to
reconfigure more in order to meet the performance constraint, or it is beneficial
to mute the CIs to reduce leakage. Afterwards, it determines the temporarily un-
used subset of CIs that are the possible muting candidates. Considering the area
requirements of the currently executing and upcoming hot spots, the energy man-
agement scheme uses a Selective Instruction Set Muting technique to determines
an appropriate muting mode for each CI. The benefits of determining the energy
minimizing instruction set (i.e., exploiting the tradeoff of leakage, dynamic, and
reconfiguration energy) and the Selective Instruction Set Muting are individually
evaluated in Sect. 5.3.3 and 5.4.5, respectively. The evaluation is performed for
different performance constraints and resolutions, while considering various fabri-
cation technologies in order to demonstrate the technology independent efficiency
of the proposed energy management scheme. This scheme is the key to realize an
adaptive low-power reconfigurable processor architecture.

5.5 Summary of Adaptive Low-power Reconfigurable Processor Architecture

www.manaraa.com

157

This chapter presents the details of building the power model described in Sect. 3.4
(p. 63). This power model is employed for power estimation, which is then used for
the run-time adaptive energy management in reconfigurable processors (Chap. 5)
and energy estimation for the adaptive low-power video encoding (Chap. 4). Sec-
tion 6.1 presents the power measurement setup. Section 6.2 discusses the flow for
creating the power model and parameter estimation. It further describes the pro-
cedure and different test cases for measuring the power of a complete Custom In-
struction Implementation Version and different constituting components (i.e., com-
putation, communication, and memory). Results for different measurements and
estimated power are presented in this section. Section 6.3 presents the procedure
and results for measuring the power of the reconfiguration process.

6.1  �Power Measurement Setup

Figure 6.1a shows the power measurement environment which is developed in the
scope of this monograph. It consists of a power supply board (Fig. 6.1b), two Agi-
lent oscilloscopes (MSO6032A, and MSO6054A), a Xilinx Virtex-II v6000 FPGA
(at 50 MHz and 1.5 V VCCINT) based prototyping board (Fig. 6.1c), and a control
program (running on a PC) for capturing the measurements from the oscilloscopes.
Two oscilloscopes are used to simultaneously measure two different entities (e.g.,
FPGA and external memory). Precise measurement resistors of R = 1.0 Ω are used.
The voltage drop is measured across the two ends of a resistor using oscilloscopes
as V = V2 − V1 and the current flowing through this resistor is obtained using I = V/R
formula. Here V1 is the input voltage to the FPGA. The overall power consumption
is P = IV1.

Power supply board:  To accurately measure the power consumption of FPGAs, a
power supply board (Fig. 6.1b) is developed that supplies power to the FPGA pro-
totyping board (Fig. 6.1c). This power board has several functions:

Chapter 6
Power Measurement of the Reconfigurable
Processors

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3_6, © Springer Science+Business Media LLC 2011

www.manaraa.com

158

•	 The voltage converters transform the input voltage (12 V) from the DC source
to the desired voltages (VCCINT, VCCAUX, VCCI/O for the FPGA and voltages for
peripherals)

•	 The fuses protect against the high current and the switching relays are activated
only when all voltages are on

•	 The resistors measure the voltage drops at the output plugs

Agilent Oscilloscopes and VISA interface:  The maximum sampling rate of
MSO6032A and MSO6054A oscilloscopes are 2 and 4 GSamples/s, respectively,
which is sufficient for the measurement. Both oscilloscopes support the VISA inter-
face, which is an API for electronic control devices. It allows to send commands
to the oscilloscopes and/or to receive data from the oscilloscopes. The Agilent IO
Library (software) is used to create the control software (using Microsoft .Net
Framework) for the oscilloscopes. Most of the functions performed with the knobs
are also realized via VISA. This enables automation of the measurement process.

6.2  �Measuring the Power of Custom Instructions

In this section, the flow for creating the power model is presented. Different test
cases for measuring the power of different components are discussed. Afterwards,
results for power measurement are presented.

6.2.1  �Flow for Creating the Power Model

Figure 6.2 shows the flow to build the power model for CI Implementation Version.
First, the HDL code of different Data Paths and Implementation Versions is synthe-
sized with Xilinx Synthesis Technology (XST) [Xil10a]. Afterwards, Mapping, Place
& Route, and Assemble are done using Xilinx Plan Ahead with the Early Access Par-
tial Reconfiguration (EAPR) tool flow [Xil05] to obtain full and partial bitstreams.

Fig. 6.1   a Measurement setup. b The in-house developed power supply board

6 Power Measurement of the Reconfigurable Processors

www.manaraa.com

159

The partial bitstreams are then uploaded on the FPGA and power is measured for dif-
ferent Data Paths and Implementation Versions (see details in Sect. 6.2.2).

As discussed in Sect. 3.4 (p. 63), to estimate the dynamic power consumption of an
executing CI Implementation Version ( PCI_dyn), the following needs to be considered:

•	 The types of Data Paths and how often they are executed.
•	 The number of write/read accesses on the local memory.
•	 The number of bus segments necessary for communicating the intermediate re-

sults.

Based on the analysis (Fig. 6.3), the dynamic power of a CI Implementation Version
is modeled as:

� (6.1)

α, β, γ, δ are model coefficients.  accounts for the measurement noise. PDataPath,
PSegBus, and PMemory are the average power consumption of a Data Path, a bus seg-
ment, and a single read or write operation, respectively (see details in Sect. 3.4). The
model coefficients α, β, γ, and δ are estimated on Matlab using the Simulated An-
nealing algorithm (Tcool = 0.8 T, Tstop = 10−12, Eallowable = 5%, and maximum consecu-
tive rejections = 104) and trained with a set of measured power values (see Table 6.4
in Sect. 6.2.3 for the final estimated values). Tcool is the cooling temperature that
determines the temperature of the next iteration of the algorithm. Tstop is the tem-

PCI_dyn = α ∗ PDataPath + β ∗ PSegBus + γ ∗ PMemory + δ

Fig. 6.2   Flow for creating the measurement-based power model

Measure Power Consumption on FPGA

HDL Description
(RTL)

Synthesis
(XST)

Net List (NGC)
File

PlanAhead
MAP, PAR, &

Assemble

Execute on FPGA
and Measure Power

BUILD POWER
MODEL

Build and Verify Power Model

Full + Partial
bitstreams

Estimate the
Model Coefficients

Calculate Model-
Based Power Values

6.2 Measuring the Power of Custom Instructions

Fig. 6.3   Test case and setup for measuring the power of an idle (empty) framework

S
ig

na
l G

en
er

at
or

Empty
DPC 2

Empty
DPC 1

Empty
DPC 3

Put Zero
on the
Buses

Test Case 1) Empty Framework

Data Path
Container

(reconfigurable)
scaled down for

clarity

Bus Connector
(non-reconfigurable)

www.manaraa.com

160

perature where the algorithm stops iterating and output the coefficients. Training is
done by minimizing the difference error between the estimated (model-generated)
and the measured power values of an Implementation Version for a given maximum
error Eallowable (5% in this case). The finalized model coefficients are then fed into
the power model, which is then used for estimating the energy consumption of vari-
ous CI Implementation Versions at run time.

Since the power can only be measured for the complete FPGA, in order to de-
termine the power of the individual parameters (i.e., Data Path, segmented buses,
and local memory) and the complete Implementation Version, several test cases are
devised which are explained in the following.

6.2.2  �Test Cases for Power Measurements

First, the computation- and communication infrastructure (Fig. 3.7, Sect. 3.4.1) is
extended with a signal generator to realize a measurement framework. The power
consumption of signal generator and leakage are surplus to the actual power con-
sumption of an Implementation Version, thus, considered as the base offset (see test
case 1, Fig. 6.3). The buses and the local memory consume energy only in case a
toggle happens due to, e.g., a Data Path writes a new value into the local memory
of its Bus Connector.

Test Case 1) Measuring power of the idle measurement framework (PTest-

Case1):  As discussed above, for a base offset, the power of the idle framework
(PTestCase1) is measured such that all DPCs contain blank bitstreams (i.e., a DPC is
reconfigured to do nothing) and ‘0’ value is transmitted on the bus segments. No
writing to the local memory is performed. In this test case, the power consumption
is mainly due to leakage and signal generator.

Test Case 2) Measuring power of a Data Path (PDataPath):  The dynamic power
of a Data Path depends upon its type. To obtain the power of a Data Path, only
one DPC is reconfigured to contain a particular Data Path and all other DPCs
contain blank bitstreams (see Fig. 6.4). The output of the Data Path is not
stored in the local memory. The average power of one Data Path is obtained as:
PDataPath = PTestCase2 − PTestCase1. Numerous measurements are performed with varying

Fig. 6.4   Different test cases for measuring the power of different components of a custom instruc-
tion (CI) implementation version

6 Power Measurement of the Reconfigurable Processors

www.manaraa.com

161

stimulus to obtain the power of all Data Paths as used in the final experiments
(see Table 6.2 in Sect. 6.2.3).

Test Case 3) Measuring power of the Local Memory (PMemory):  Two different
tests are performed for measuring the power consumption of the local memory:

a.	 Write to the local memory (see Fig. 6.4): this test extends the test case 2 by writ-
ing the output of a Data Path into the local memory. The power of a write opera-
tion into the local memory is: PWriteMem = PTestCase3a − PTestCase2

b.	 Read from the local memory (see Fig. 6.4): This test extends the test case 3a by
writing the content of the local memory to a bus segment. The power of a read
operation from the local memory is: PReadMem = PTestCase3b − PTestCase3a

Note, reading from a local memory causes toggles in the multiplexers of the Bus
Connector and in the bus segment to which its contents are written. The power
due to both types of toggles is considered as the power of one read from the local
memory.

Test Case 4) Measuring power of a Bus Segment (PSegBus):  As discussed in
Sect. 3.4, the communication power depends upon the number of bus segments,
which directly depends on the relative placement of the communicating Data Paths
on the reconfigurable fabric. In this test, the values from the local memory are writ-
ten to one particular bus segment and ‘0’ value is written to the other bus segments
towards right to avoid toggles. To get the power of a bus segment, the test case 3b is
extended such that the placement of a particular Data Path is shifted towards one DPC
right and the difference of two measurements gives the power of one bus segment
as: PBusL2R = ( PTestCase3b)DPC_N + 1 − ( PTestCase3b)DPC_N. The average of several tests for dif-
ferent Data Path placements provides a more stable power value for a bus segment.

The measured power of Data Paths, local memory, and bus segments are used
in the power model to estimate the power consumption of a CI Implementation
Version. However, to tune the coefficients of the model and for model verification,
several experiments were performed to measure the complete power of different
Implementation Versions.

Test Case 5) Measuring power of a complete CI Implementation Version
(PCI_ImpVersion):  The bitstreams of all Data Paths of an Implementation Version are
reconfigured and the control signals determine the communication between these
Data Paths. The power is measured for the complete execution of the Implementa-
tion Version. For an Implementation Version with latency L, the per cycle average
power is computed as: PCI_ImpVersion = PTestCase5/L − PTestCase1. Since there are several
Data Paths processing in parallel, there might exist many Data Path placement com-
binations, i.e., a Data Path can be placed in one out of many DPCs and with increas-
ing number of Data Paths the number of possible placement combination increases.
An example of two Transform Data Paths is shown in Table 6.1 that was used in
the measurement experiments. Each combination has different power consumption
due to different amount of bus segments used. Therefore, different measured power
values are used to tune the corresponding estimated power values for the same CI
Implementation Version.

6.2 Measuring the Power of Custom Instructions

www.manaraa.com

162

6.2.3  �Results for Power Measurement and Estimation

Table 6.2 shows the measured power results for different Data Paths and Implementa-
tion Versions. These power values are used for tuning the model coefficients ( α, β, γ, δ,
see Table 6.3 for finalized values) and verification of the power model (Sect. 3.4,
p. 63). The reconfiguration power and time is obtained by measurements (see Sect. 6.3
for details of the power measurement procedure). Note, differently sized Data Paths
may require different reconfiguration time due to their varying bitstream sizes.

Table 6.4 presents the power consumption and latencies of different Implementa-
tion Versions for two different cases of total DPCs at 40 nm (Virtex-6) and 65 nm
(Virtex-5) technologies. It is notable that the power consumption of Implementation
Versions on 40 nm is lesser than that on 65 nm due to the low-power architectural
improvements in Virtex-6 [Kle10].

Table 6.1   Different placement combinations of two transform Data Paths for power measurement
1st Transform
Data Path at

2nd Transform Data Path at

DPC 2 DPC 3 DPC 4 DPC 5 DPC 6 DPC 7
DPC 3 DPC 4 DPC 5 DPC 6 DPC 7
DPC 4 DPC 5 DPC 6 DPC 7
DPC 5 DPC 6 DPC 7
DPC 6 DPC 7

6 Power Measurement of the Reconfigurable Processors

Attribute Value

α 1.2387
β 0.4699
δ 0.0911
γ 0.8165

Table 6.3   Parameters of
power model for the CI
implementation versions

Data Path Power [mW] Implementation version:
HT4 × 4 (Repack in
DPC0)

Power [mW]

Clip3 15.9 Transform in DPC2* 178.9
PointFilter 55.4 Transform in DPC4* 180.8
LF_4 57.9 Transform in DPC6* 185.1
Cond 13.1 Bus_Power ( PBus)** 3.4
CollapseAdd 19.7 Mem_Power ( PRW) 28.3
SADrow 28.2
SAV 25.1
Transform 64.9
QuadSub 24.1
Repack 14.4

*Showing the effect of changing communication requirements, **power for a single toggling bus
segment; many bus segments are used for communication to realize an Implementation Version

Table 6.2   Measured power results for various data paths & HT4 × 4 implementation versions

www.manaraa.com

163

Ta
bl
e
6.
4  

Po
w

er
 c

on
su

m
pt

io
n

an
d

la
te

nc
ie

s o
f d

iff
er

en
t i

m
pl

em
en

ta
tio

n
ve

rs
io

ns
 (u

si
ng

 d
iff

er
en

t a
m

ou
nt

 o
f D

PC
s)

 fo
r v

ar
io

us
 c

us
to

m
 in

st
ru

ct
io

ns
 fo

r 6
5

nm

an
d

40
 n

m
 te

ch
no

lo
gi

es
Fu

nc
tio

na
l b

lo
ck

C
us

to
m

in

st
ru

ct
io

n
D

at
a

pa
th

s
U

si
ng

 4
 D

PC
s

U
si

ng
 2

0
D

PC
s

La
te

nc
y

[c
yc

le
s]

Po
w

er
 [m

W
]

La
te

nc
y

[c
yc

le
s]

Po
w

er
 [m

W
]

40
 n

m
65

 n
m

40
 n

m
65

 n
m

M
ot

io
n

Es
tim

at
io

n
( M

E)
SA

D
16

 ×
 16

SA
D

ro
w

68
47

.3
5

67
.2

1
41

59
.7

6
84

.3
9

SA
TD

4 ×
 4

Q
ua

dS
ub

, T
ra

ns
fo

rm
,

R
ep

ac
k,

 S
AV

93
13

.8
7

19
.6

8
29

57
.2

4
81

.7
2

M
ot

io
n

C
om

pe
n-

sa
tio

n
( M

C
)

M
C

_H
z_

4
Po

in
tF

ilt
er

, R
ep

ac
k,

 C
lip

3
10

52
.0

0
74

.0
0

10
58

.7
5

83
.7

5

In
tra

 P
re

di
ct

io
n

( I
Pr

ed
)

IP
re

d_
H

D
C

C
ol

la
ps

eA
dd

, R
ep

ac
k

13
0

7.
46

10
.5

4
13

0
7.

46
10

.5
4

IP
re

d_
V

D
C

C
ol

la
ps

eA
dd

, R
ep

ac
k

53
4.

00
5.

28
53

4.
00

5.
28

( I
nv

er
se

) T
ra

ns
fo

rm
(I

)D
C

T4
 ×

 4
Tr

an
sf

or
m

, R
ep

ac
k,

(Q

ua
dS

ub
)

10
2

9.
51

13
.4

3
20

62
.0

0
88

.0
0

(I
)H

T_
2 ×

 2
T r

an
sf

or
m

2
50

.0
0

70
.0

0
2

50
.0

0
70

.0
0

(I
)H

T_
4 ×

 4
T r

an
sf

or
m

, R
ep

ac
k

16
60

.0
0

85
.6

3
15

64
.6

7
92

.0
0

In
-lo

op
 D

eb
lo

ck
in

g
Fi

lte
r (

 LF
)

LF
_B

S4
C

on
d,

 L
F_

4
10

52
.0

0
74

.0
0

10
52

.0
0

74
.0

0

6.2 Measuring the Power of Custom Instructions

www.manaraa.com

164

6.3  �Measuring the Power of the Reconfiguration Process

The smallest reconfigurable unit in a Xilinx FPGA (Virtex family) is a so-called
frame [Xil05]. A Data Path Containers (DPCs) is composed of multiple frames. Due
to technological reasons, DPCs are typically of rectangular shapes. The power mea-
surements are performed using a Virtex-II FPGA where a frame covers the complete
height of the FPGA. Therefore, the DPC consists of multiple Configurable Logic
Block (CLB) columns1. Before performing a reconfiguration, the configuration data
of the corresponding frames is read. Afterwards, the parts of the configuration data
corresponding to the region(s) under reconfiguration are modified accordingly. In
the last step, the frames are written back. Doing so assures the consistency of the
static part and the other un-altered reconfigurable parts within the frames, when
compared to their previous configuration.

For reconfiguring the DPCs, a dedicated Reconfiguration Controller IP core is
developed ([Bau09]), which is connected to the MicroBlaze. It reads the partial
bitstreams from an external EEPROM (KFG5616 32 MB OneNAND from Sam-
sung [Sam05]), buffers data in a FIFO for burst transfer, and streams the data to
the Internal Configuration Access Port (ICAP) of the FPGA for reconfiguration.
Figure 6.5 shows an abstract diagram of this connection. Buffering is done because
that the maximum data that can be continuously read in the burst read mode is one
1 KB memory page, which is much smaller than the size of a bitstream. As a result,
the bitstream cannot be completely sent to ICAP in a burst, which does not comply
with the input requirements of the ICAP. The MicroBlaze starts the reconfiguration
by providing the starting address and length of a particular Data Path’s bitstream in
the external EEPROM. A checksum of the reconfigured bitstream is returned. After
the MicroBlaze triggered a reconfiguration, the FIFO is filled with data from the
EEPROM (Fig. 6.5). When the FIFO contains sufficient data to assure a continuous
50 MB/s burst to the ICAP of the FPGA, the data is sent from the FIFO to the ICAP
port. The ICAP is operated at 50 MHz (same frequency as for the core pipeline and
the MicroBlaze). The EEPROM delivers the remaining parts to the FIFO in parallel
to the running reconfiguration. Due to the initial buffering (until sufficient data is
available to perform a continuous 50 MB/s burst afterwards), the effective recon-
figuration bandwidth for the whole process is 36 MB/s.

To measure the power consumption of the EEPROM and the reconfiguration via
ICAP, a Data Path bitstream of 40 KB size is transferred from EEPROM to ICAP

1  In the latest Virtex families (Virtex-4 and later), a frame does not span over the full FPGA height.

6 Power Measurement of the Reconfigurable Processors

Fig. 6.5   Connection of FIFO
between EEPROM and ICAP

ICAP

Write Enable
Write Clock

reset

Read Enable
Read Clock

Write Data Count

EEPROM
(OneNAND) 32 KB FIFO

www.manaraa.com

165

through the Reconfiguration Controller. Both oscilloscopes are used to simultane-
ously measure the power consumption of EEPROM and the FPGA.

6.3.1  �Power Consumption of EEPROM

Figure 6.6a shows the measured signals while loading the bitstream of a Data Path
from EEPROM to the FPGA. The V2 and V1 analog signals illustrate the voltage
before and after a measurement resistor (1 Ω), respectively. This measurement re-
sistor is connected with the EEPROM in series and thereby its current goes further
to the EEPROM. As a result, the value of current through the EEPROM and the
measurement resistor is identical. The analog signal indicating the voltage drop
across the measurement resistor is computed by taking the difference between the
V2 and V1 signals. The average value of current flowing through the measurement
resistor is: I = 25 mV/1 Ω = 25 mA. The input voltage to the EEPROM (i.e., after the
resistor) is measured as 3.26 V. Therefore, the corresponding power consumption is:
P = 3.26 V * 25 mA = 81.6 mW.

6.3.2  �Power Consumption of the Reconfiguration via ICAP

Figure 6.6b illustrates the measured signals for transferring the bitstream of a Data
Path to the ICAP and performing the corresponding reconfiguration. The analog sig-
nals indicate the voltage drop of the measurement resistor, which is connected with
the FPGA in series. Moreover, the digital signals for the write enable of the FIFO
and the write enable of the ICAP are also shown in Fig. 6.6b. The time for loading
and reading bitstream from EEPROM is indicated by the write enable of FIFO.

6.3 Measuring the Power of the Reconfiguration Process

Fig. 6.6   a EEPROM voltage drop while loading one Data Path Bitstream from EEPROM to
FPGA. b VCCINT voltage drop for transferring one Data Path bitstream to ICAP and performing
the corresponding reconfiguration

www.manaraa.com

166

The ICAP write enable becomes high after sufficient data is loaded in the FIFO
and it indicates the operating time of ICAP, namely the time for reconfiguration.
The average voltage drop of the measurement resistor is 375.2 mV and the average
current flowing through the measurement resistor is: I = 375.2 mV/1 Ω = 375.2 mA.
The input voltage to the FPGA is measured as 1.43 V, thus the power consumption
is: P = 1.43 V * 375.2 mA = 536.5 mW. The power of the idle setup is 382 mW; thus,
the actual reconfiguration power ( PDPC_reconf) is 236 mW ( 536.5 + 81.5 − 382 = 236).

6.4  �Summary of the Power Measurement  
of the Reconfigurable Processors

The power model proposed in this monograph (see Sect. 3.4) is based on power
measurements. To perform power measurements, a setup is designed and imple-
mented that consists of a power supply board, two Agilent oscilloscopes, a Xilinx
Virtex-II v6000 FPGA based prototyping board, and a control program for captur-
ing the measurements from the oscilloscopes. To build a power model, the HDL
code of different Data Paths and Implementation Versions was synthesized and im-
plemented using the Xilinx tool chain with the Early Access Partial Reconfiguration
tool flow. The resulting bitstreams were uploaded to the FPGA board and power
consumption was measured for various input stimuli. In order to measure the power
consumption of different components (i.e., Data Paths, communicating buses, local
memory accesses), various test cases were devised. The measurements are used to
train the model and evaluate the estimation accuracy. The reconfiguration power is
measured by measuring the power consumption of the EEPROM (containing the
configuration bitstreams) and the Internal Configuration Access Port (ICAP). The
Data Path bitstream is transferred from the EEPROM to the ICAP through a recon-
figuration controller. The reconfiguration energy mainly depends upon the amount
of configuration data and the reconfiguration bandwidth. To simultaneously mea-
sure the power of both EEPROM and the ICAP, two oscilloscopes were deployed.
The reconfiguration power measured is in the range of 236 mW.

6 Power Measurement of the Reconfigurable Processors

www.manaraa.com

167

In this chapter, the adaptive low-power application and processor architectures
are benchmarked. The evaluation and analysis of the individual parts of the
proposed adaptive low-power application and processor architecture are already
presented in Chaps. 4 and 5, respectively. The first section will provide benchmarks
for different algorithms at the Mode Decision and Motion Estimation levels for
realizing adaptive low-power video coding. These algorithms are compared with
different state-of-the-art fast and adaptive approaches. This section additionally
provides the comparison with the exhaustive Rate Distortion Optimized Mode
Decision (RDO-MD) and exhaustive search algorithms to benchmark against the
optimal quality as it is typically done by the related work, too. The second section
benchmarks the adaptive low-power reconfigurable processor architecture (with
energy management scheme) against state-of-the-art reconfigurable processor. The
following two different types of dynamically reconfigurable processor architectures
are considered for comparison.

1.	 Dynamically reconfigurable processors that target at maximizing the performance
for a given amount of reconfigurable fabric area. Kindly see Sect. 7.3.1 for com-
parison with architectures supporting monolithic Custom Instructions (CIs) and
see Sect. 7.3.2 for comparison with architectures supporting modular CIs.

2.	 Dynamically reconfigurable processors with the support of hardware-oriented
shutdown techniques for leakage power reduction monolithic CIs (see compari-
son in Sect. 7.3.3).

Both of these approaches are provided with the same set of low-power Custom
Instructions (CIs) and Data Paths (see Sect. 4.2, p. 80) as they share the same CI
model for accelerating the applications. For processor level benchmarking the com-
plete H.264 video encoder is used, as the intricate processing behavior of the H.264
video encoder represents the increasing complexity of modern embedded multi-
media applications. It exhibits different computational intensive parts (SAD for
Motion Estimation, DCT, CAVLC, filters for Motion Compensation and Deblock-
ing, etc.) that supersede the complexity of conventional benchmark applications in
the benchmark suites (like MiBench [GRE + 01] and MediaBench [LPMS97]). The
evaluation is performed for various fabrication technologies ranging from 40 nm

Chapter 7
Benchmarks and Results

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3_7, © Springer Science+Business Media LLC 2011

www.manaraa.com

168

to 150 nm (considering the reconfigurable fabric structure of Xilinx FPGAs, i.e.,
Virtex-II, 4, 5, 6).

7.1  �Simulation Conditions and Fairness  
of the Comparison

For energy estimation, simulations are performed using the RISPP simulator ex-
tended with the proposed energy-management system (see Chap. 5) and power es-
timation methodology (see Sect. 3.4 and Chap. 6). Kindly refer to the Appendix B
for further details on the simulation environment for the adaptive low-power re-
configurable processors. For video quality testing, algorithms’ functional verifica-
tion, and checking the standard compliance, the simulations are performed using the
JM13.2 software of H.264 video encoder [JVT10]. For evaluation and validation of
several QCIF and CIF video sequences (low to fast motion) [Ari08; Xip10] are en-
coded with different QPs (12, 16, 20, 24, 28, 32, 36, and 40) and bit rates. Common
test conditions are: IPPP GOP (Group of Pictures) type, 1 reference frame, search
range = 16. Note: all energy saving results include the overhead of the correspond-
ing algorithm and the computation of video statistics. Moreover, all results include
the leakage and dynamic energy consumption.

State-of-the-art techniques for different functional blocks of the H.264 video
encoder were carefully implemented and simulated and their results were verified
with their corresponding papers. Kindly note that several implementations were
already available in the JM13.2 software.

Comparing state-of-the-art with the processor-level contribution is not straight-
forward. As discussed in Chap. 5, state-of-the-art approaches employ hardware-ori-
ented shutdown, which has a different abstraction level for shutdown decision com-
pared to the proposed energy management scheme with the Selective Instruction Set
Muting technique (i.e., an instruction set oriented shutdown). In order to provide a
fair comparison, the hardware-oriented shutdown concepts of [Ge04] and [MM05]1
(i.e., predetermining the components of DPCs that can be shutdown at run time)
were deployed carefully to realize two predetermined muting modes as follows:

a.	 Predetermined Virtually Muting (Pre-VM) technique based on the hard-
ware-oriented shutdown of [Ge04]: it always puts the temporarily unused CIs
into virtually-muting mode as the hardware-oriented shutdown of [Ge04] only
supports switching-off of Logic and it always keeps the Configuration SRAM
powered-on.

b.	 Predetermined Fully Muting (Pre-FM) technique based on the hardware-
oriented shutdown of [MM05]: it always puts the temporarily unused CIs into
fully-muting mode as the hardware-oriented shutdown of [MM05] supports the
combined switching-off of both Logic and Configuration SRAM.

1  These approaches [Ge04; MM05] are considered for the comparison as they are the closest to
the proposed technique in terms of shutdown options for different components of the fabric, thus
representing a fair comparison.

7 Benchmarks and Results

www.manaraa.com

169

In the following, the energy consumption comparison of the above-mentioned
techniques will be presented for given performance constraints, such that in these
particular scenarios, all techniques meet their performance constraints. Different
performance constraints correspond to changing application contexts (like a change
in the frame rate of the video coding). For further fairness of comparison, the same
set of low-power CIs and Data Paths (see Sect. 4.2) is provided to all techniques.
Therefore, the results reflect solely the impact when applying the proposed energy
management scheme to realize an adaptive low-power reconfigurable processor ar-
chitecture.

7.2  �Adaptive Low-power Application Architecture

In this section the Adaptive Computational Complexity Reduction Scheme (see
Sect. 4.4, p. 95) and the energy-aware Motion Estimation with the integrated ener-
gy-budgeting scheme (see Sect. 4.5, p. 104) are compared individually with differ-
ent state-of-the-art to demonstrate their individual energy benefit. Note, these two
schemes are the key contribution of this monograph to realize an application archi-
tecture for adaptive low-power video coding. In Sect. 7.3, the complete H.264 video
encoder will be deployed as an application to evaluate the adaptive low-power re-
configurable processor architecture.

7.2.1  �Comparing Complexity Reduction Scheme  
to State-of-the-art and the Exhaustive RDO-MD

The proposed Adaptive Computational Complexity Reduction Scheme (ACCoReS,
Sect. 4.4) is compared to several state-of-the-art fast RDO-MD schemes for quality (a
positive ∆PSNR shows PSNR loss) and energy reduction using similar coding condi-
tions. Figure 7.1 shows that, compared to state-of-the-art approaches [JC04; KC07;
PC08; SN06; Yu04], ACCoReS achieves up to 82% (average 56%) higher energy re-
duction at the cost of an average PSNR loss of 0.66 dB. The maximum energy saving
of ACCoReS is achieved for the Paris sequence when compared to the approaches of
[JC04] and [Yu04]. It is due to the fact that the approach of [JC04] processes on aver-
age five out of seven block types, while the approach of [Yu04] only considers mode
correlation in the previous video frame. The significant energy saving of ACCoReS
comes from the Prognostic Early Mode Exclusion and Hierarchical Fast Mode Pre-
diction that curtails the set of candidate coding modes for further evaluation. This
energy saving comes at the cost of a PSNR loss of up to 1.3 dB (average 0.66 dB).
However, this loss is mainly at the PSNR value of more than 40 dB. It is worthy to
note that, subjectively a loss of 1 dB is hard to be noticed by the human eye in case
the overall PSNR is more than 40–45 dB [GW02; Pra01; WOZ02].

Figures 7.2 and 7.3 show the energy savings and the quality loss of ACCoReS
compared to the exhaustive RDO-MD (that provides the optimal quality) for vari-

7.2 Adaptive Low-power Application Architecture

www.manaraa.com

170

ous bitrates. The quality loss for CIF sequences is less than 2.5%, while for QCIF
sequences the quality loss is less than 5%. On average, the quality loss of ACCoReS
is 1.38% and 1% for CIF and QCIF sequences, respectively. However, the average
energy savings of ACCoReS are 63.27% and 66.74% for CIF and QCIF sequences,
respectively. Figure 7.2 shows that the highest energy savings (more than 70%) are
achieved for Susie and Hall sequences which are slow motion sequences. In con-
trast, the lowest energy savings are achieved for the American Football sequence
which a fast motion sequence. Still, in this case, the energy savings are more than

Fig. 7.1   Comparing the
energy savings and quality
loss of the ACCoReS with
several state-of-the-art fast
mode decision schemes

7 Benchmarks and Results

Fig. 7.2   Energy savings and quality loss of the ACCoReS compared to the exhaustive RDO-MD
for CIF resolution video sequences

www.manaraa.com

171

50%. It is worthy to note that, in some QCIF cases (like Akiyo and Container), AC-
CoReS achieves a better PSNR. It is mainly due to the Macroblock based prioritiza-
tion step in the Rate Control (see Appendix A.2).

Figure 7.4 shows the Rate-Distortion (R-D) curves of ACCoReS and the exhaus-
tive RDO-MD. It demonstrates the quality loss of ACCoReS compared to the opti-
mal video quality at a certain given bitrate. It can be noticed in Fig. 7.4 that for slow
to medium motion sequences ( Akiyo, Container, and Susie) the achieved quality of
ACCoReS is close to that of the exhaustive RDO-MD. However, for the fast motion
sequence ( American Football), ACCoReS suffers from a PSNR loss of up to 5.7%.
It is worthy to note that this PSNR loss occurs at the PSNR values of more than
40–45 dB. As discussed above, these discrepancies are insignificant as it is hard for
a human eye to subjectively recognize a PSNR loss for the encoded videos having
PSNR above 40–45 dB [GW02; Pra01; WOZ02]. Mostly, ACCoReS achieves a
much closer R-D as compared to exhaustive RDO-MD.

Figure 7.5 presents the evaluation of the proposed ACCoReS for a power-aware
test on a laptop (Intel Core2Duo T5500, 1.66 GHz) using its battery status. The
Mobile test video sequence is encoded at 512 kbps@30 fps. Depending upon the
current battery status, different states of the ACCoReS (i.e., Prognostic Early Mode
Exclusion, Sect. 4.4.1, and Hierarchical Fast Mode Prediction, Sect. 4.4.2) are acti-
vated or deactivated. First the battery of the laptop is fully charged and then discon-
nected from the power outlet for the encoding test. Note after every 300 frames,
there is a scene cut, where a sudden PSNR drop occurs, although relatively more
modes are evaluated in this case. Kindly note that most of the evaluated modes are

Fig. 7.3   Energy savings and quality loss of the ACCoReS compared to the exhaustive RDO-MD
for QCIF resolution video sequences

7.2 Adaptive Low-power Application Architecture

www.manaraa.com

172

Intra modes, thus the number of SAD computations are dropped also in the corre-
sponding frames (see dotted circles in Fig. 7.5 corresponding to the scene cuts). The
PSNR drop is mainly due to the high amount of prediction error even in case of Intra
Prediction (i.e., I-MB modes) and for a given bitrate this corresponds to a PSNR
loss. As the battery level decreases to less than 25%, only aggressive exclusions are
performed and only one mode per Macroblock is evaluated. When the battery status
reaches 10%, the battery is charged again for a short time (see Fig. 7.5) to demon-

Fig. 7.5   Power test with a real battery using Mobile sequence

7 Benchmarks and Results

Fig. 7.4   Comparing the rate distortion curves for QCIF and CIF sequences

20

25

30

35

40

45

50

20

25

30

35

40

45

50

20

25

30

35

40

45

50

American
Football (CIF)

Rate [Mbits]
0

P
S

N
R

 [
d

B
]

10 20 30 40 50
20

25

30

35

40

45

50

Rate [Mbits]
0 2 4 8 10 126 14

Susie (CIF)

Akiyo (QCIF)

P
S

N
R

 [
d

B
]

Rate [Mbits]
0 1 2 4 6 73 8

Container (CIF)

5

Exhaustive RDO ACCoReS

www.manaraa.com

173

strate the quick response of ACCoReS. In this case ACCoReS switches to a high
quality mode where relaxed decisions are taken and the Hierarchical Fast Mode
Prediction is deactivated to maintain a good video quality. This experiment dem-
onstrates the quality versus energy consumption tradeoff of the ACCoReS scheme.

7.2.2  �Comparing the Energy-Aware Motion Estimation with
Integrated Energy Budgeting Scheme to State-of-the-art

In the following, the proposed energy-aware Motion Estimation with the integrated en-
ergy-budgeting scheme (see Sect. 4.5, p. 104) is compared to three benchmark Motion
Estimators, i.e., Unsymmetrical-cross Multi-Hexagon-grid Search (UMHexagonS)
[CZH02], simple UMHexagonS [YZLS05], and Enhanced Predictive Zonal Search
(EPZS) [Tou02] for energy and video quality (PSNR) using various video sequences
[Ari08; Xip10]. The following experiments are performed using a bitrate of 256 kbps.

Summary of Two Battery States:  Figure 7.6 shows the summary of the energy
saving of the proposed energy-aware Motion Estimation compared to the state-of-
the-art fast adaptive Motion Estimators. The box plot shows the summary of 96
experiments with 12 sequences and two different cases of initial battery states (1 Ws
and 500 µWs). Figure 7.6 shows that the energy-aware Motion Estimation achieves
an energy benefit of up to 93%, 93%, 90% (average 88%, 88%, 77%) for UMHexa-
gonS [CZH02], UMHexagonS-Simple [YZLS05], EPZS [Tou02], respectively. Even
in the worst case, the energy-aware Motion Estimation provides 65% energy savings
compared to EPZS. The significant energy savings are mainly due to the switching
between multiple Energy-Quality Classes depending upon the spatial and temporal
properties of different Macroblocks (MBs). Although the battery is full, the energy
is not wasted in case of homogeneous and slow moving MBs, and they are allocated
less energy quota for the Motion Estimation process. Due to the slow motion proper-
ties, the reduced Motion Estimation effort and pixel decimation in SAD computation
still provides a sufficiently good match of the current MB in the reference frame.
Therefore, the incurred quality loss for sequences with homogeneous and slow mov-
ing MBs (see Carphone, Clair, Akiyo in Fig. 7.7) is insignificant.

7.2 Adaptive Low-power Application Architecture

Fig. 7.6   Summary of energy savings of the enBudget scheme compared to various fast adaptive
motion estimation schemes

www.manaraa.com

174

Details for One Battery State (1 Ws):  Figure 7.7 presents the detailed energy sav-
ings and PSNR loss of the energy-aware Motion Estimation compared with state-
of-the-art fast adaptive Motion Estimators. The major energy saving comes for low
motion sequences ( MissAmerica, Akiyo, Clair, and Mobile). Note, all the compari-
son partners are also adaptive Motion Estimators, thus they also react to different
motion properties using their early termination criteria. However, as discussed ear-
lier, the proposed energy-aware Motion Estimation scheme achieves higher energy
saving due to the Energy-Quality Classes and video properties based downgrade/
upgrade of Energy-Quality Classes. In several cases, the energy-aware Motion
Estimation even achieves higher PSNR due to adaptive energy budget allocation,
thus more Motion Estimation effort is spent for selective MBs (high texture, high
motion). In this case, the overall average PSNR is improved. This is visible espe-
cially for low motion sequences ( Clair and Akiyo). Compared to the Full Search
Motion Estimator, the energy-aware Motion Estimation provides an energy saving
of up to 99% at the cost of an average PSNR loss of 0.29 dB, which is visually
insignificant. However, as discussed in Chap. 2 (see Sect. 2.2.3, p. 24), typically the
Full Search is only used for video quality comparison.

Fig. 7.7   Comparing energy saving and PSNR loss of the proposed energy-aware motion estima-
tion and the enBudget scheme with various fast adaptive motion estimators. (* negative PSNR loss
actually shows the PSNR gain of the scheme)

7 Benchmarks and Results

www.manaraa.com

175

7.3  �Adaptive Low-power Processor Architecture

In this section the Run-Time Adaptive Energy Management Scheme (Sect. 5.2,
p. 126) is benchmarked which is required to realize an adaptive low-power proces-
sor architecture. It determines an energy minimizing instruction set (see Sect. 5.3,
p. 133) and employs the novel concept of Selective Instruction Set Muting (see
Sect. 5.4, p. 146). In the following the adaptive energy management scheme is
compared to different state-of-the-art, considering both with and without Selective
Instruction Set Muting in order to demonstrate the individual energy benefit of the
energy minimizing instruction set and Selective Instruction Set Muting.

7.3.1  �Comparing the Adaptive Energy Management Scheme
(Without Selective Instruction Set Muting) to RISPP  
with Performance Maximization [BSH08c]

Figure 7.8 shows the comparison between RISPP (with a performance-maximizing
scheme ( PerfMax)2, performance is the main optimization goal [BSH08c]) and the
proposed adaptive energy management scheme when executing the H.264 video
encoder at three different performance constraints. In this case, the energy manage-
ment scheme determines an energy minimizing instruction set (that minimizes the

2  Note: the power-shutdown is disabled in case of RISPP_PerfMax, as switched-off DPCs lose
their configuration data and this typically degrades the performance, e.g., when the same Data
Paths are needed soon afterwards. Comparison with RISPP_PerfMax also demonstrates the perfor-
mance loss of AEM_FM compared to the peak performance.

7.3 Adaptive Low-power Processor Architecture

Fig. 7.8   Energy comparison of the AEM_FM and RISPP_PerfMax schemes for 65 nm

www.manaraa.com

176

energy for a given performance constraint) without Selective Instruction Set Muting
using various muting modes. Rather the muting mode ‘Fully Muted CIs’ is consid-
ered for all unused CIs. Here the purpose is to benchmark the energy management
scheme with the energy minimizing instruction set and CI-level shutdown in Fully-
Muted mode (denoted as AEM_FM for the ease of representation in the figures and
the corresponding discussion) against the conventional reconfigurable processor
approaches that maximize the performance. The energy management scheme with
Selective Instruction Set Muting using various muting modes will be benchmarked
in Sect. 7.3.3 against various hardware-oriented shutdown techniques.

Using the H.264 video encoder application, for 30 fps on 65 nm, AEM_FM
achieves an energy saving of up to 40.78% (avg. 24.77%) compared to RISPP_Per-
fMax [BSH08c]. For 35 fps, AEM_FM achieves an energy saving of up to 25.06%
compared to RISPP_PerfMax. In order to maximize the performance RISPP_Per-
fMax uses more DPCs thus leading to higher leakage and reconfiguration energy
(see Fig. 7.8). However, compared to RISPP_PerfMax, the AEM_FM at 35 fps may
suffer from an average performance loss of 8%.

Figure 7.9 shows the breakdown of leakage and dynamic energy averaged over
17 cases of available reconfigurable fabric area (i.e., 4–20 DPCs). It can be noted in
Fig. 7.9 that major savings come from leakage energy reduction as a result of the CI-
level shutdown. The energy management scheme determines the energy minimizing
instruction set in such a way that the performance constraint is met, while the num-
ber of DPCs to be shutdown is also increased to achieve higher leakage reduction.
The key is to shift the shutdown decision to the CI level such that all temporarily
unused CIs are muted (i.e., deactivated by an instruction set level shutdown, see
Sects. 5.2.1 and 5.2.2). It can be noticed that the leakage energy savings at 5 fps is
more than that at 35 fps due to an increased number of switched-off DPCs.

7.3.2  �Applying the Adaptive Energy Management Scheme
(Without Selective Instruction Set Muting) to Molen
[VWG + 04] Reconfigurable Processor

In order to validate the applicability and benefits of the proposed adaptive energy
management scheme with CI-level muting, the energy management scheme has
been additionally evaluated for other state-of-the-art reconfigurable processors

7 Benchmarks and Results

Fig. 7.9   Average energy comparison of the AEM_FM and RISPP_PerfMax for three technologies

www.manaraa.com

177

(like Molen [VWG + 04]) that support the monolithic CI model (see Sect. 2.3.4).
Figure 7.10 shows the energy savings for Molen [VWG + 04] with the proposed
adaptive energy management scheme applied and Molen without the energy man-
agement scheme (averaged over 17 cases of area constraints, i.e., different sizes
of the reconfigurable fabric). When compared to Molen without the energy man-
agement scheme (i.e., maximizing for performance), Molen plus the energy man-
agement scheme achieves an energy saving of up to 48.65% (average 28.93%)
for 30 fps at 65 nm. This shows that the proposed adaptive energy management
scheme is equally beneficial for various state-of-the-art reconfigurable processors
as well.

Now, the adaptive energy management scheme with Selective Instruction Set
Muting technique (that employs various CI muting modes) is benchmarked against
different state-of-the-art hardware-oriented shutdown techniques.

7.3.3  �Comparing the Adaptive Energy Management Scheme
(with Selective Instruction Set Muting) to State-of-the-art
Hardware-oriented Shutdown

As discussed in Sect. 7.1.1 and Chap. 5, comparing the proposed energy manage-
ment scheme with state-of-the-art hardware-oriented shutdown techniques [Ge04;
MM05] is not straightforward due to a different abstraction level of shutdown. Un-
like state-of-the-art [Ge04; MM05], the proposed energy management scheme em-
ploys the Selective Instruction Set Muting technique (i.e., an instruction set oriented
shutdown). Therefore, for a fair comparison, the hardware-oriented shutdown con-
cepts of [Ge04] and [MM05] were deployed carefully to realize two predetermined
CI muting techniques: (a) [Ge04]-based Predetermined Virtually Muting (Pre-VM)
technique, and (b) [MM05]-based Predetermined Fully Muting (Pre-FM) technique
(see Sect. 7.1.1 for further details). It is worthy to note that, the components of a
DPC (i.e., Logic of Configuration SRAM, see Sects. 2.3.2 and 5.2.2) that can be
shutdown are predetermined at design time in these state-of-the-art [Ge04; MM05],
thus the muting mode is fixed for the unused CIs.

7.3 Adaptive Low-power Processor Architecture

Fig. 7.10   Percentage energy saving of Molen [VWG + 04] plus AEM_FM over Molen without
AEM_FM for three technologies

www.manaraa.com

178

Figure 7.11 compares the breakdown of the energy comparison for the proposed
energy management scheme with Selective Instruction Set Muting and the two pre-
determined CI muting techniques. Each bar is the average value of 170 experiments
(17 cases of the reconfigurable fabric area and 10 cases of different performance
constraints). Figure 7.11 shows that the leakage energy is dominant in the [Ge04]-
based Pre-VM technique due to high SRAM leakage, especially in case of CIF
encoding. In contrast to this, the [MM05]-based Pre-FM technique reduces the
leakage energy by shutting down the SRAM, but suffers from significant reconfigu-
ration energy overhead. The proposed adaptive energy management overcomes the
drawbacks of both of the above techniques by providing multiple CI muting modes
and selecting an appropriate mode at run time for a temporarily unused subset of
CI depending upon their predicted muting duration. It overcomes the reconfigura-
tion overhead of Pre-FM by using the virtually-muting mode for a subset of CIs
and eliminates the drawback of Pre-VM by putting the subset of CIs in fully-muting
mode that are not used for a rather long period (see the details of different muting
modes in Sect. 5.2.1 and 5.4). Figure 7.11 illustrates that the energy management
scheme with multiple CI muting modes is superior to both state-of-the-art tech-
niques in all cases. In particular, the benefit of the proposed scheme is noticeable in
high-resolution encodings due to a rather long muting duration. It is worthy to note
in Fig. 7.11 that the leakage energy of the energy management scheme is slightly
lower than that of Pre-FM. This is because virtually-muted CIs may bring a leakage

7 Benchmarks and Results

Fig. 7.11   Comparing the energy breakdown of the adaptive energy management scheme (with
selective instruction set muting) to [Ge04]-based pre-VM and [MM05]-based pre-FM

www.manaraa.com

179

reduction due to a faster execution3 (as a result of the powered-on Configuration
SRAM), which is not the case in the Pre-VM technique (see Sect. 2.3.2).

Figure 7.12 shows the energy consumption of the proposed adaptive energy
management scheme with Selective Instruction Set Muting and the two predeter-
mined CI muting techniques for a varying amount of the available reconfigurable
fabric (i.e., different number of available DPCs) when encoding QCIF@45fps at
65 nm technology. There are two interesting cases in Fig. 7.12. The first breakeven
point corresponds to the 10 DPCs case where the [Ge04]-based Pre-VM technique
starts turning noticeably worse than the energy management scheme due to the in-
creased leakage of the powered-on Configuration SRAM. The second breakeven
point corresponds to the 13 DPCs case where the [Ge04]-based Pre-VM technique
even worsens compared to the [MM05]-based Pre-FM. This shows that the Pre-
VM technique is only beneficial when rather few DPCs are available. In this case,
most of the available DPCs are always used. However, in order to meet tighter
performance constraints, typically more DPCs are required, and in such cases the
Pre-VM technique performs inefficiently. In contrast, the proposed energy manage-
ment scheme is beneficial for almost all the cases (see Fig. 7.12). The performance
constraints and the amount of available DPCs cannot be predicted at design- and/or
compile-time as they depend on run-time specific scenarios, like changing applica-
tion contexts or multi-tasking interactions.

It is noticeable in Fig. 7.12 that the proposed energy management scheme with
Selective Instruction Set Muting performs always better than the [MM05]-based
Pre-FM technique, whereas [Ge04]-based Pre-VM sometimes performs better.
Therefore, Fig. 7.13 focuses on further comparisons with Pre-VM, showing the en-
ergy benefit summary (480 experiments per technology with various combinations
of available fabric area and performance constraints) of the proposed energy man-
agement scheme when compared with the Pre-VM technique. Figure 7.13 shows

3  The larger leakage power does not necessarily lead to larger leakage energy if the execution time
is correspondingly shorter.

7.3 Adaptive Low-power Processor Architecture

Fig. 7.12   Energy comparison of the adaptive energy management scheme with [Ge04]-based pre-
VM and [MM05]-based pre-FM techniques for varying amount of reconfigurable fabric

www.manaraa.com

180

that, compared to the Pre-VM technique, the proposed scheme provides on aver-
age 41.64%, 43.11%, 33.75%, and 43.52% energy reduction for 40 nm, 40 nmL,
65 nm, and 90 nm, respectively. When rather few DPCs are available, the Pre-VM
technique performs better than the proposed scheme as most of the DPCs are always
used. However, in most of the cases (especially for larger resolutions), the proposed
scheme outperforms the Pre-VM technique and provides an energy reduction of up
to 82%.

It is worthy to note that the adaptive energy management with Selective In-
struction Set Muting provides a compromise between [Ge04]-based Pre-VM and
[MM05]-based Pre-FM techniques.

7.4  �Summary of the Benchmarks and Comparisons

This chapter presented the benchmarks and evaluation of the proposed adaptive low-
power application and processor architectures for various video sequences under
different coding conditions. The adaptive energy management scheme is evaluated
for different fabrication technologies under various performance and reconfigurable
fabric area constraints. Moreover, both application and processor architectures are
compared to state-of-the-art approaches.

At the application level, the proposed energy-aware H.264/AVC video encoder
is evaluated for several video sequences with low to fast motion encoded at differ-
ent bit rates. The proposed algorithms are compared for energy savings and quality
degradation. Compared to state-of the-art approaches [JC04, KC07, PC08, SN06,
Yu04], the proposed adaptive complexity reduction scheme achieves up to 82% (av-
erage 56%) higher energy reduction at the cost of an average PSNR loss of 0.66 dB.
When compared to the exhaustive RDO-MD, the proposed complexity reduction
scheme provides an average energy savings of 63.27% and 66.74% with an aver-
age PSNR loss of 1.38% and 1% for CIF and QCIF sequences, respectively. The
highest energy savings (more than 70%) are obtained for slow motion sequences.

Fig. 7.13   Energy savings of the adaptive energy management scheme compared to the [Ge04]-
based pre-VM technique

7 Benchmarks and Results

www.manaraa.com

181

The proposed energy-aware Motion Estimation with the integrated energy-budget-
ing scheme achieves an energy benefit of up to 93%, 93%, 90% (average 88%,
88%, 77%) for UMHexagonS [CZH02], UMHexagonS-Simple [YZLS05], EPZS
[Tou02] adaptive Motion Estimators, respectively. The major energy saving comes
for low motion sequences ( MissAmerica, Akiyo, Clair, Mobile, etc.) due to the
switching between multiple Energy-Quality Classes depending upon the spatial and
temporal properties of different Macroblocks. Even at a full battery level, the en-
ergy is not wasted for homogeneous and slow moving Macroblocks. Alternatively,
more energy budget is allocated to the fast moving Macroblocks. Due to the slow
motion properties, the reduced Motion Estimation effort still provides a sufficiently
good match of the current Macroblock in the reference frame. Therefore, the in-
curred quality loss for sequences with homogeneous and slow moving Macroblocks
is insignificant.

The proposed adaptive low-power processor architecture with run-time adap-
tive energy management scheme is evaluated for highly flexible Custom Instruc-
tion set architectures like in [Bau09; VWG + 04]. The H.264 encoder is used as the
application with various performance constraints and video resolutions. Applied to
the RISPP architecture with modular CI model, the proposed adaptive energy man-
agement scheme with CI-level muting achieves an energy saving of up to 40.78%
(average 24.77%) for 65 nm at the cost of an average performance loss of 8%, when
compared to the original RISPP (i.e., having performance as the main optimization
goal). The proposed adaptive energy management scheme with CI-level muting is
additionally integrated with other state-of-the-art reconfigurable processors (like
Molen [VWG + 04]) with monolithic CI model where it provides an energy saving
of up to 48.65% (average 28.93%) for 30 fps at 65 nm. This shows that the proposed
adaptive energy management scheme is equally beneficial for various state-of-the-
art reconfigurable processors as well. Experiments for different fabrication technol-
ogies demonstrate the technology independent efficiency of the proposed scheme.
The adaptive energy management scheme with Selective Instruction Set Muting
technique (using multiple CI muting modes) is additionally benchmarked against
different state-of-the-art hardware-oriented shutdown techniques [Ge04; MM05],
where it provides on average more than 30% energy savings.

Overall, the comparison with state-of-the-art and benchmarks for diverse experi-
mental conditions demonstrate the superiority of the proposed adaptive low-power
processor and application architectures, especially under run-time varying sce-
narios due to changing video properties, available energy resources, user-defined
constraints, etc. The proposed adaptive energy management scheme with Selective
Instruction Set Muting is particularly beneficial in applications with hard-to-predict
behavior where conventional embedded (reconfigurable) processors operate inef-
ficiently with respect to energy/power consumption. The results corroborate the
potential for far higher energy savings of dynamically reconfigurable processors
which currently still suffer from a low efficiency as far as energy is concerned. At
the application level, the novel concept of Energy-Quality Classes and adaptive
complexity reduction provides a foundation for adaptive low-power video encoding

7.4 Summary of the Benchmarks and Comparisons

www.manaraa.com

182

to react to the unpredictable video data in an energy-efficient way. Altogether, the
proposed processor and application architectures enable adaptive embedded mul-
timedia systems with low power/energy consumption to provide means for next-
generation mobile multimedia applications and emerging multimedia standards.

7 Benchmarks and Results

www.manaraa.com

183

8.1  �Monograph Summary

This monograph aims at exploiting the available potential of energy reduction in
adaptive multimedia systems (based on dynamically reconfigurable processors)
while meeting the performance and area constraints and keeping the video quality
degradation unnoticeable, under run-time varying scenarios (due to changing video
properties, available energy resources, user-defined constraints etc.). To enable this,
novel techniques for adaptive energy management at both processor architecture
and application architecture levels are proposed, such that both hardware and soft-
ware adapt together in order to minimize the overall energy consumption under
design-/compile-time unpredictable scenarios.

The key contribution at the processor architecture level is based on the novel
concept of Selective Instruction Set Muting. Unlike state-of-the-art hardware-ori-
ented shutdown techniques [CHC03; Ge04; MM05; Te06], the proposed Selective
Instruction Set Muting allows to shun the leakage energy at the abstraction level
of Custom Instructions (CIs), i.e., an instruction set oriented shutdown. Various
so-called ‘CI muting modes’ are introduced, each leading to a particular leakage en-
ergy saving. This enables a dynamic tradeoff between ‘leakage energy saving’ and
‘reconfiguration energy overhead’ considering the application execution behavior
under run-time varying performance and area constraints (e.g., in a multi-tasking
environment). For dynamically reconfigurable processors, it is hard to predict at
compile time which parts of the instruction set will be reconfigured on which part of
the reconfigurable fabric. Therefore, raising the abstraction level of shutdown to the
instruction set level provides a new way to save energy in dynamically reconfigu-
rable processors by relating leakage energy reduction to the execution context of an
application. It thereby enables a far higher potential for energy savings that results
in a much higher energy efficiency for dynamically reconfigurable processors (and
reconfigurable computing in general). The associated potential energy savings have
not been exploited by state-of-the-art approaches [CHC03; Ge04; MM05; Te06].

Based on the concept of CI muting, an adaptive low-power processor architec-
ture is proposed that integrates a novel run-time energy management scheme with
dynamically reconfigurable processors. It exploits the higher potential for energy

Chapter 8
Conclusion and Outlook

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3_8, © Springer Science+Business Media LLC 2011

www.manaraa.com

184

savings due to the concept of CI muting with multiple shutdown modes and pro-
vides a high adaptivity. The energy management scheme investigates the tradeoff
between leakage, dynamic, and reconfiguration energy for a given performance
constraint, thus dynamically moving in the energy-performance design space. In
the first step, the energy management scheme dynamically determines an energy
minimizing instruction set under run-time varying performance and area constraints
considering leakage, dynamic, and reconfiguration energy. Afterwards, it decides
which subset of CIs shall be muted at what time and in which mode in order to mini-
mize the overall energy. For this, the temporarily unused set of the CIs is determined
which is the candidate for muting (i.e., power-shutdown) to reduce the leakage en-
ergy. Depending upon the Data Path requirements of the currently executing and the
upcoming computational hot spots, a particular muting mode is determined for each
CI by evaluating the possible associated energy benefit (a joint function of leakage,
dynamic, and reconfiguration energy) at run time. Afterwards, the shutdown signals
to the corresponding sleep transistors are issued. Note, these decisions may depend
upon the number of CI executions that may vary at run time due to the application
level adaptivity (e.g., changing control flow), changing input data, performance
constraints, and the execution length of the hot spot. Therefore, the number of actual
CI executions is monitored at run time. The algorithms for determining the energy
minimizing instruction set and Selective Instruction Set Muting are explained on a
formal basis and evaluated for various fabrication technologies.

To facilitate the adaptive energy management at both processor and application
levels, a comprehensive power model for dynamically reconfigurable processors
(i.e., ASIC-based core Instruction Set Architecture with an embedded FPGA) is
developed, which is based on power measurements. The proposed power model es-
timates the power of modular Custom Instructions (CIs) executing on the reconfig-
urable fabric considering run-time choices of multiple CI Implementation Versions.
Moreover, it can also be used to estimate the power of monolithic CIs that employed
by the dynamically reconfigurable processors like Molen [VWG+04]. The leakage
and dynamic power properties of both the core Instruction Set Architecture and the
reconfigurable fabric are considered in the power model. The model parameters are
estimated by performing an optimization using Simulated Annealing for an estima-
tion error of less than 5%. The power of a CI Implementation Version depends upon
(a) the types of Data Paths and how often they are executed, (b) the number of write/
read accesses on the local storage, and (c) the number of bus segments necessary for
communicating the intermediate results; this value depends on the relative place-
ment of the communicating Data Paths on the reconfigurable fabric. As the power
model is based on actual power measurements, a complete power-measurement
setup for dynamically reconfigurable processors (a power supply board, two oscil-
loscopes, an FPGA based prototyping board, and a control program for capturing
the measurements) is implemented and the power of various CI implementation
versions in hardware is measured.

The proposed adaptive low-power processor architecture with run-time adaptive
energy management scheme is evaluated for multiple Custom Instruction set archi-
tectures (RISPP [Bau09], Molen [VWG+04]) using an in-house developed H.264

8 Conclusion and Outlook

www.manaraa.com

185

encoder application (with various performance constraints and video resolutions)
and various fabrication technologies. Applied to the RISPP architecture that sup-
ports the modular CI model, the proposed adaptive energy management scheme
with CI-level muting achieves an energy saving of up to 40.78% (average 24.77%)
for 65 nm at the cost of an average performance loss of 8% when compared to the
original RISPP (i.e., having performance as the main optimization goal). In order to
validate the applicability and benefits of the proposed adaptive energy management
scheme, it has been additionally evaluated for other state-of-the-art reconfigurable
processors (like Molen [VWG+04]) that support the monolithic CI model. When
compared to Molen without the energy management scheme (i.e., maximizing for
performance), Molen plus the energy management scheme achieves an energy sav-
ing of up to 48.65% (average 28.93%) for 30 fps at 65 nm. This shows that the
proposed adaptive energy management scheme is equally beneficial for various
state-of-the-art reconfigurable processors as well. The adaptive energy management
scheme with Selective Instruction Set Muting technique (that employs multiple CI
muting modes) is additionally benchmarked against different state-of-the-art hard-
ware-oriented shutdown techniques [Ge04; MM05]. Compared to [Ge04]-based
technique, the proposed scheme provides on average 41.64%, 43.11%, 33.75%, and
43.52% energy reduction for 40 nm, 40 nmL, 65 nm, and 90 nm, respectively. On
overall, compared to [Ge04; MM05] based techniques, the proposed energy man-
agement scheme achieves on average more than 30% energy savings.

At the application architecture level, the adaptivity and energy reduction are
demonstrated using an advanced video encoder (like H.264/AVC). An optimized
application architecture for video encoders targeting dynamically reconfigurable
processors is proposed. The finalized application architecture is implemented with
optimized data flow and data structures. Various low-power Custom Instructions
and Data Paths are designed for the H.264 video encoder. Several algorithms are
proposed to realize adaptive low-power video encoding. First, an analysis of spa-
tial and temporal video properties is performed with consideration of important
Human-Visual System properties in order to categorize different video frames and
their Macroblocks. Quantization Parameter based threshold models are developed
to obtain precise categorization depending upon the coding configuration. Further-
more, an analysis of the energy consumption of different functional blocks of the
video encoder is performed. This analysis is used by an adaptive complexity re-
duction scheme to reduce the energy requirements of the H.264/AVC encoder by
excluding improbable coding modes from the mode-decision process. It solves the
issue of choosing the final coding mode out of hundreds of possible combinations
(without exhaustively searching the design space) by considering the spatial and
temporal video properties. Unlike state-of-the-art, this scheme performs an exten-
sive mode-exclusion before fast Mode Decision and Motion Estimation processes,
thus providing a significant reduction in the computational complexity. Once the
final set of candidate coding modes is determined, an energy-aware Motion Estima-
tion with integrated energy-budgeting scheme is employed in order to adaptively
predict the energy quota for the Motion Estimation corresponding to each candidate
coding mode. It employs the novel concept of Energy-Quality Classes in order to

8.1 Monograph Summary

www.manaraa.com

186

realize adaptive low-power video encoding. Each Energy-Quality Class represents
a particular Motion Estimation configuration that requires a certain energy while
providing a certain video quality. It thereby enables a run-time tradeoff between
the energy consumption and the resulting video quality. A set of common optimal
Energy-Quality Classes is obtained by performing a design space exploration for
various test video sequences. The adaptive energy-budgeting scheme chooses a cer-
tain Energy-Quality Class for different video frames considering the available en-
ergy, video frame characteristics, and user-defined coding constraints while keeping
a good video quality. The corresponding Motion Estimation configuration (i.e., set
of initial search point predictors, search patterns, etc.) is forwarded to the energy-
aware Motion Estimation. After the Motion Estimation is completed, the energy
of Energy-Quality Classes is updated depending upon the current video statistics.

The proposed energy-aware H.264/AVC video encoder is evaluated for several
QCIF and CIF video sequences (low to fast motion) [Ari08; Xip10] encoded at
different bit rates, while considering the power model proposed in this monograph.
The proposed algorithms are compared for quality degradation and energy savings.
Compared to state-of-the-art approaches [JC04; KC07; PC08; SN06; Yu04], the
proposed adaptive complexity reduction scheme achieves up to 82% (average 56%)
higher energy reduction at the cost of an average PSNR loss of 0.66 dB. Com-
pared to the exhaustive rate distortion optimized Mode Decision, the proposed
adaptive complexity reduction scheme provides average energy savings of 63.27%
and 66.74% with an average PSNR loss of 1.38% and 1% for CIF and QCIF se-
quences, respectively. The highest energy savings (more than 70%) are obtained
for slow motion sequences. The proposed energy-aware Motion Estimation with
the integrated energy-budgeting scheme achieves an energy benefit of up to 93%,
93%, 90% (average 88%, 88%, 77%) for UMHexagonS [CZH02], UMHexagonS-
Simple [YZLS05], EPZS [Tou02] adaptive Motion Estimators, respectively. The
proposed energy-budgeting scheme is equally beneficial for other state-of-the-art
fast adaptive MEs as well. When integrated into UMHexagonS [CZH02] Motion
Estimator, it provides an energy saving of up to 80% (avg. 70%) with a slight PSNR
loss of 0.11 dB. Compared to the Full Search, the energy-aware Motion Estimation
scheme provides an energy saving of up to 99% at the cost of an average PSNR
loss of 0.29 dB, which is visually insignificant. Note, the comparison with the Full
Search is mainly for video quality. The major energy saving comes for low motion
sequences ( MissAmerica, Akiyo, Clair, Mobile, etc.) due to the switching between
multiple Energy-Quality Classes depending upon the spatial and temporal proper-
ties of different Macroblocks. Even at a full battery level, the energy is not wasted
for homogeneous and slow moving Macroblocks. Alternatively, more energy bud-
get is allocated to the fast moving Macroblocks. Due to the slow motion properties,
the reduced Motion Estimation effort still provides a sufficiently good match of the
current Macroblock in the reference frame. Therefore, the incurred quality loss for
sequences with homogeneous and slow moving Macroblocks is insignificant.

To compensate the quality loss due to the energy-aware adaptations, a multi-
level rate control is proposed. It allocates a bit budget to the Group of Pictures and
then distributes this budget to different frames. It afterwards determines the final

8 Conclusion and Outlook

www.manaraa.com

187

Quantization Parameter value for each Macroblock inside a frame considering its
spatial and temporal properties (see Appendix A). It allocates more bits to the com-
plex Macroblocks and less bits to the less-complex ones. The complete H.264 video
encoder application with the proposed run-time algorithms and low-complexity
data flow is demonstrated by executing it on an in-house RISPP dynamically re-
configurable processor prototype [Bau09], Texas Instruments’ multimedia proces-
sor, and laptop/desktop computers (see Appendix B). A video analysis tool with an
easy-to-use graphical user interface is developed for quick and in-depth analysis of
video sequences (see Appendix C).

Overall, the comparison with state-of-the-art and benchmarks for diverse experi-
mental conditions demonstrate the superiority of the proposed adaptive low-power
processor and application architectures, especially under run-time varying sce-
narios due to changing video properties, available energy resources, user-defined
constraints, etc. The proposed adaptive energy management scheme with Selective
Instruction Set Muting is particularly beneficial in applications with hard-to-predict
behavior where conventional embedded (reconfigurable) processors operate inef-
ficiently with respect to energy/power consumption. The results corroborate the
potential for far higher energy savings of dynamically reconfigurable processors
which currently still suffer from a low efficiency as far as energy is concerned. At
the application level, the novel concept of Energy-Quality Classes and adaptive
complexity reduction provide a foundation for adaptive low-power video encoding
to react to the unpredictable video data in an energy-efficient way. Altogether, the
proposed processor and application architectures enable adaptive embedded mul-
timedia systems with low power/energy consumption to provide means for next-
generation mobile multimedia applications and emerging multimedia standards.

8.2  �Future Work

The novel conceptual contribution, benchmarking with diverse experimental condi-
tions, and comparison with relevant state-of-the-art demonstrate that for designing
an adaptive low-power multimedia system, there is a dire need to combat the power-
related issues at all abstraction levels (i.e., at both processor and application levels).
Moreover, for the next-generation low-power multimedia systems, both hardware
and software need to adapt together at run time to efficiently utilize the available
energy resources under design-/compile-time unpredictable scenarios. The promis-
ing results of this research work open new research avenues for power-management
techniques in dynamically reconfigurable processors, improved power efficiency,
energy-aware image and video processing, and compile-time automation. These
new research avenues are summarized in the following.

Power-management techniques in dynamically reconfigurable processors:  Sig-
nificant energy efficiency has been obtained using the novel concept of Selective
Instruction Set Muting that raises the abstraction level of power-shutdown to the

8.2 Future Work

www.manaraa.com

188

instruction set level. A power-shutdown infrastructure with multiple sleep transis-
tors needs to be researched to support multiple muting modes considering the area
and wakeup overhead. Such an infrastructure should be designed with consideration
of partitioning of the reconfigurable fabric to support run-time partial reconfigura-
tion (i.e., employing Data Path Containers). Design of the power-rail is an addi-
tional research challenge in this case. Furthermore, other factors like ground bounce
noise may be considered while controlling the wakeup signals of different Data
Path Containers. The proposed energy management scheme can also be extended
towards multi-tasking systems, where multiple tasks share the same reconfigurable
fabric. In such a scenario the fabric may be allocated to different tasks. Then the
challenging question arises: whether it is beneficial to mute the temporarily unused
subset of Custom Instructions of a task or temporarily re-allocate the corresponding
fabric portion to the other tasks to achieve higher energy efficiency for them. When
considering the sharing of a fabric among different tasks, the design of an energy
management system becomes an additional research challenge. The contribution of
this monograph provides an initial foundation for researching such power-related
issues. Moreover, the benchmarks demonstrated that the provision of Dynamic
Voltage and Frequency Scaling (DVFS) techniques may provide additional energy
savings in cases of lower performance constraints.

Improved Power Efficiency:  The proposed energy management system can
be extended to a reconfigurable multicore processor where several cores share a
centralized reconfigurable fabric. In such cases energy management becomes a
complicated issue especially when different cores are executing tasks of varying
complexities and constraints. First there will be a need for a power model for such
reconfigurable multicore processor. The proposed power model can be considered
a starting point for this research. Further challenges will be managing the energy
consumption of cores and the fabric in a holistic way.

Energy-aware image and video processing:  In the scope of this monograph, an
adaptive low-power video encoder is proposed that employs the concept of Energy-
Quality Classes in order to provide the run-time configurability for energy con-
sumption and resulting video quality. Such a concept can be extended towards video
pre- and post-processing where different filter algorithms are provided and a selec-
tion between different algorithms is performed depending upon the allocated energy
budget. Moreover, different configurations of such algorithms may be switched at
run time. An example can be the switching of a 5 × 5 kernel based filtering to a 3 × 3
kernel based filtering. Similar extensions may be provided for various image pro-
cessing algorithms like image enhancement with variable sized kernels. Moreover,
further extensions of the proposed concepts can be realized for upcoming video
coding standards like Multiview Video Coding and H.265 coding standard.

Compile-time Automation:  In this monograph, the application architecture and
low-power Custom Instructions and Data Paths were designed manually. In order
to reduce the development time, there is a need to research new design methodolo-
gies and tool chains to automate this process. For Custom Instructions a design tool

8 Conclusion and Outlook

www.manaraa.com

189

flow similar to that in ASIPs may be considered. However, for Data Paths and low-
power optimizations, intelligent algorithms and transformation techniques need to
be investigated. A new research project KAHRISMA [ITI; KBS+10] has started
which focuses on researching such kind of compile-time tool flow and design meth-
odology. The processor-specific adaptations in the application architecture emerge
as a more challenging task. A modular design and re-targetable compilation meth-
odology may be a suitable choice to investigate.

8.2 Future Work

www.manaraa.com

191

Appendix

Appendix A: A Multi-Level Rate Control

In this appendix, a multi-level rate control is presented that was developed in the
scope of this monograph. The proposed rate control algorithm performs a non-linear
target bit allocation to handle scene cuts and suddenly appearing high motion scenes
in video encoding at a vast range of bit rates and resolutions. It copes with varying
Rate-Distortion (RD) characteristics of different frame types (I, P, B) and different
Macroblocks (MBs) of the same frame type by categorizing them depending upon
their spatial/temporal properties. It thereby achieves a better video quality which
is required to compensate for the quality loss occurred as a result of energy-aware
adaptations in Chap. 4.

A.1  A Rate Control Algorithm

A rate control algorithm is a functional block of video encoders that fulfills the
bandwidth and buffer constraints for given channel and application properties at a
given target bitrate. Due to the unpredictable and varying nature of the input video
data, different frames and their different MBs require a different bit budget for cod-
ing (even for the same coding conditions). In case a rate controller is not used, a
possible loss of data may occur due to the buffer overflow. Moreover, ignorance of
a rate controller may also result in significant quality fluctuations that are undesir-
able for the end user.

Figure A.1 illustrates the encoding of the Susie test video sequence with a rate
controller (100 Kbps @15 fps, it corresponds to an average bit budget of 6.6 Kbits
per frame) and without a rate controller (QP = 28 provides a similar bit budget in
this case). It can be noticed from the figure that without the rate controller the fluc-
tuations in the number of the coded bits are significant, especially when there is a
significant change in the video content due to the rapid motion (in this case it is due
to the sudden waving of the girl’s head between frames 38 and 70). This results in
quality fluctuations and unsmooth buffer state (that directly corresponds to a higher

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3, © Springer Science+Business Media LLC 2011

www.manaraa.com

192

buffer cost or alternatively a risk of buffer overflow). In contrast to this, when using
the rate controller provides reduced fluctuations in the number of the coded bits,
thus providing a better buffer and quality smoothness. It is especially important in
case the videos are transmitted over a channel under limited bandwidth constraints.

A rate controller determines the Quantization Parameter (QP) by considering the
varying number of bits for each frame due to their diverse spatial and temporal char-
acteristics. A good rate controller prevents buffer overflow (frame skipping) and/or
underflow (improper bandwidth utilization) and maintains the buffer and quality
smoothness between frames. It additionally provides a good visual quality within a
frame (i.e., for different MBs) considering their Rate Distortion (RD) characteris-
tics. Unlike other video coding standards, H.264/AVC [ITU05] exhibits a complex
RD-model and a variety of frame type coding structures. A large body of research
has been conducted in different Rate Control (RC) schemes to determine QP at
frame and Basic Unit (BU, a group of Macroblocks that share the same QP value)
level to achieve a target bit rate. Most of these RC schemes use (a) QP of P frames
to determine the QP of I or B frames using (e.g., Mean Absolute Difference based)
predicted RD characteristics [LPL+03; LSW04]; (b) Mean Absolute Difference or
variance based QP adjustments at BU level [SZFH08; ZuHNS07]. Moreover, these
approaches incorporate compute-intensive models (e.g., quadratic model with run-
time adaptation of model parameters in [LPL+03; LSW04; LT07] and a standard
deviation based model at BU level in [WAW07]). However, these RCs suffer from
several drawbacks. First, the frame level target bits estimation ignores the image
statistics and motion properties [LPL+03; LSW04], thus a sudden change in the
frame (e.g., abrupt motion, scene cut) leads to discontinuities in the visual quality.
Significantly, more bits are allocated for encoding the earlier frames in a Group of
Picture (GOP) leaving a smaller bit budget for the successive frames. Another prob-
lem is the accuracy of Mean Absolute Difference estimation, as a linear model is
susceptible to high prediction inaccuracy due to the unpredictable nature of the vid-

Appendix

Fig. A.1   Comparison of produced bits with and without rate control

www.manaraa.com

193

eo content, e.g., scene cuts. Therefore, the predicted QP is too small (or big) which
leads to undesirable buffer and visual quality fluctuations. RC-Mode-0 [LPL+03]
in H.264 encoder reference software treats all frames types in the same way not
considering the diverse RD characteristics of different frame types. Therefore, it
suffers from high buffer and quality fluctuations especially when encoding videos
with multiple GOPs and multiple frame types at low bit rates. RC-Mode-3 [LT07,
08] treats I, P, and B frames in a different way considering the hierarchical levels.
However, this approach does not handle those scenarios efficiently where a scene
cut may occur at the B frame. Moreover, changing QP for each hierarchical level
may introduce undesirable quality fluctuations. Another drawback of RC-Mode-3
is that it requires a priori knowledge about the content [LT08], which is unlikely in
real-world applications due to the unpredictable nature of the video content.

Summarizing:  frequently injected I frames, scene cuts, and scenes with hectic
motion require more bits than normal P and B frames. Under scenarios of varying
RD characteristics of different frame types (I, P, B) and different MBs in one frame
(e.g., bright, textured, static/moving MBs), a low-complexity rate control with non-
linear bit budgeting is desirable.

A.2  The Proposed Multi-Level Rate Control

In this monograph, a novel Rate Control (RC) scheme is proposed and employed that
covers Group of Pictures (GOP), frame/slice, and Basic Unit levels (see Fig. A.2).
It treats different frame types (I, P, B) in a different fashion with consideration of
whether they are referenced or non-referenced frames. The proposed RC scheme
prioritizes Macroblocks (MBs) depending upon their spatial and temporal char-
acteristics (considering eye-catching regions) for refined Quantization Parameter
(QP) allocation. It handles various bit rate scenarios, poorly predicted frames, and
videos with dark/bright, blurry/noisy, high/low-textured, slow/fast motion proper-
ties. The variation in QP is restricted depending upon the target bit rate, frame type,
and buffer status etc. In the following, different blocks of the RC scheme are pre-
sented in their corresponding processing sequence.

GOP Level Rate Control:  For ensuring a smooth quality variation in consecutive
GOPs, each GOP is provided with a separate bit budget. However, this is only ben-
eficial for small-sized GOPs where target bits of a GOP serve as a hint for the frame
level bit budgeting strategy. For large-sized GOPs (e.g., ≥ 100 frames), the target bit
budget is not used as the RC scheme ensures buffer and quality smoothness at frame
level. The target bit budget for the ith GOP (TBGOPi) is determined by:

� (9.1)

TBR is the target bit rate, FR is the frame rate, NGOP is the number of frames in a
GOP, and Sbuff = mf*TBR is the bitstream buffer size. In case of Variable Bit Rate
(VBR) and large-sized buffers, a higher bit budget is allowed for the GOP. The

TBGOPi = [(Sbuff > 2∗TBR & is VBR())?2∗TBR : TBR]∗ (NGOP/FR)

Appendix A: A Multi-Level Rate Control

www.manaraa.com

194

multiplication factor mf depends upon (a) the type of RC, i.e., either Constant Bit
Rate (CBR) or VBR; and (b) channel/encoder delay constraints. The maximum buf-
fer fullness constraint is defined as BuffFullnessMax = ( 1 − BOPF) * Sbuff where the
buffer overflow prevention factor (BOPF) acts as a factor of safety. Kindly note
that, the buffer size affects the transmission delay and the overall memory cost of
the system. A relatively smaller buffer is cost effective but increases the risk of data
loss due to overflow. Alternatively, a relatively bigger buffer increases the trans-
mission delay and memory requirements. The size of the bitstream buffer may be
determined by the provided buffer smoothness of a rate controller.

Non-Linear Target Bit Budgeting:  Since different frame types or different Basic
Units (BUs) of the same frame may exhibit varying RD characteristics, a linear tar-
get bit budgeting may lead to undesirable/unacceptable quality variations. A scene
cut in P or B frames will require more bits than the previous P/B frame to avoid
sudden PSNR variation. In RC-Mode-0 [LPL+03], the QP for the I frames depends
upon the target bit rate and resolution. Some RC schemes consider spatial variance
of frame for linear translation into bits. The RC scheme in [LT08] uses RI = γI*RP
and RB = γB*RP to predict the target bits of I and B frames. However, linear functions
may lead to quality fluctuations due to the unpredictable nature of video data thus
they are inefficient in sudden textural changes. Therefore, a non-linear target bit
budgeting is performed to handle scene cuts, I frames, and high-textured images.
First, the amount of texture difference ( EdgeDiffAVG) between two consecutive
frames is calculated (using Sobel Operator). Afterwards, the target bits for jth frame
of ith GOP ( TBits_Fi,j) are determined as:

�

(9.2)

where ε1, ε2, and ε3 classify the complexity difference of consecutive frames. NGOPi_

Rem is the number of remaining non-encoded frames in the ith GOP, and BitsTotalUsed
is the total amount of bits spent till the last encoded frame. If EdgeDiffAVG does not
exceed ε1, it is sufficient to perform a linear target bit allocation.

Frame/Slice Level Rate Control:  At frame/slice level, a Normalized PID Con-
troller (see Fig. A.2) is deployed to compute the ∆QP. The QP of current frame/
slice (QPslice) is obtained by adding ∆QP and QPprev. The normalized PID controller
keeps the buffer occupancy close to the target buffer fullness using its three gain
factors.

a.	 Normalized Proportional Gain (KP′) reduces the error between the achieved and
target bits.

b.	 Normalized Integral Gain (KI′) eliminates the steady error effect by considering
the accumulated error of previously encoded frames.

c.	 Normalized Derivative Gain (KD′) ameliorates the system stability.

IF (EdgeDiffAV G > ε1 or isI_Slice() or isSceneCut())

ξ = [max (min (EdgeDiffAV G/ε1, ε2), ε3)] ELSE ξ = 1

TBitsFi,j = ξ ∗ [((TBGOPi ∗NGOP/FR) − BitsTotalUsed)/NGOPi_Rem]

EdgeDiffAVG =
∑#MBs

i = 0

∣∣EdgeFcurri − EdgeFprevi

∣∣/#MBs

Appendix

www.manaraa.com

195

The ∆QP is calculated by:

�
(9.3)

KP, KI, and KD are obtained using the Ziegler-Nichols-Method (ZN-Method) that
uses an online experiment followed by the use of rules to compute the numerical
values of the PID coefficients [JM05]. The dynamic vibration behavior of the com-
plete control loop is investigated using the following procedure:

•	 First, only the P-controller is setup and the I- and D-parts are disable.
•	 For small P-coefficient values, the signal will result in a transient oscillation af-

ter some disturbance at the beginning. With increasing P-coefficient values, the
signal will build up and the oscillation becomes mixed up.

•	 By successive iterations, the goal is to find a P-coefficient value at which the
closed control loop swings with constant amplitude—the so-called Critical
Ziegler-Nichols-Point. The period of this oscillation is called TCritical and the pro-
portional boost KP_Critical. Figure A.3 illustrates the case for the American Football
test video sequence with 1 Mbps@15 fps, where KP_Critical = 0.8 and TCritical = 2.

•	 These values are utilized in the Ziegler-Nichols-Rules to compute the three PID
coefficients:

�
(9.4)

The proposed PID controller is different from the related work as it directly outputs
the ∆QP after scaling (considering the fact that an increase of 6 in QP value doubles

�QP = KP ′ ∗e(t) + KI ′ ∗
∑

e(t) + KD′ ∗ [e(t) − e(t − 1)]

e(t) = ABitsF i,j − TBitsF i,j , {KP ′ , KI ′ , KD′ } = {KP , KI , KD}/TBR

KP = 0.6∗KP _Critical, KI = KP /(0.5∗TCritical), KD = KP ∗ (0.125∗TCritical)

Appendix A: A Multi-Level Rate Control

Fig. A.2   The multi-level rate control scheme covering GOP, frame/slice, & BU levels along with
image and motion based macroblock prioritization

www.manaraa.com

196

the quantization step) of PID gains to achieve an embedded translation of PID output
into ∆QP. Moreover, the gains of the PID controller are normalized to make it ge-
neric for a vast range of bit rates (32 Kbps–4 Mbps). The output of the PID control-
ler (i.e., ∆QP) is then clipped between ± ∆QPLimit (to keep a smooth visual quality):

�

(9.5)

Note: ∆QP is calculated in a similar way for all frame types using the normalized
PID controller but QPprev is calculated in a different way for P and B frames. For
P frames QPprev is simply the QP of last encoded frame. However, for calculating
QPprev in B frames a Temporal Distance (td) based scheme is deployed (as shown in
Fig. A.4) due to their dissimilar RD characteristics compared to P frames.

The QPprev_Bi for the ith B-frame is calculated using the minimum of (1) average
QP of previously encoded frame, and (2) weighted average of QPs of two refer-
enced frames, as shown below:

� (9.6)

The RC scheme treats B frames in two categories: ‘used as referenced frame’ and
‘not used as referenced frame’. Due to this reason, it results in a far lesser PSNR

IF(QPFprev_Avg − 36 ≥ 0) �QPLimit = MIN(MAX(QPFprev_Avg − 35, 3), 5)

ELSE �QPLimit = 3

QPBi_wAvg = (tdref 2 ∗ QPref1 + tdref1 ∗ QPref2)
/

(tdref1 + tdref2)

QPBi_prev = MIN (QPBi_wAvg,
∑# MBs

i=0
QPFi_prev/# MBs)

Fig. A.4   Temporal distance based QP calculation for B frames/slices

Appendix

Fig. A.3   Critical Ziegler-Nichols-point for American Football

www.manaraa.com

197

variation (see Sect. A.3) compared to state-of-the-art. Finally, the QP for a B frame
is computed as:

�
(9.7)

After adding ∆QP in the QPprev, the resulting QP is clipped between QPMIN and
QPMAX that are determined as follows:

�
(9.8)

In case of a buffer management system, the control effort is relaxed or tightened
based on buffer status and buffer size considering the target bit rate. For VBR and
large buffer-sized systems where data is not read from the buffer after encoding
each frame (rather the reading from buffer is scheduled based on task switching
considering encoder and buffer as two different tasks), QPMAX is adjusted as:

� (9.9)

Basic Unit (BU) Level Rate Control:  The BU-level rate control reacts to changing
image content within one video frame and performs refined QP allocations inside a
frame depending upon the spatial and temporal complexity of the BU. Unlike state-
of-the-art approaches (e.g., [LPL+03; SZFH08]), a BU-level rate control is used for
both P and B frames. Since I frames deploy spatial prediction using neighboring
MBs, varying QP at BU-level may lead to an unacceptable PSNR variation. There-
fore BU-level rate control is disabled for an I frame. Figure A.5 shows the BU-level
rate control operating in the following three steps.

Step 1) Refined QPslice Adjustments: In the first step, QPslice is refined by an amount
of ∆QPdec which depends upon the spatial/temporal properties of the BU. The
Eq. A.5.1 in Fig. A.5 show the computation of ∆QPdec for a dark BU in a dark
frame to avoid the white noise effects in the darker regions. THBU_QP, THBU_Br,
THBU_SAD, and THB_Low control the amount of decrement and categorize a BU as
dark or bright. Afterwards, Eqs. A.5.2–A.5.4 compute the decrement step for
∆QPdec for bright regions with less texture or slow motion to avoid the loss of
details. Irrespective of the brightness of a BU, strong quantization may distort
the slow moving regions therefore it needs to be preserved (see Eqs. A.5.5 and
A.5.6). In case the MB inside a BU is stationary but not skipped, there is a high
probability that there will be some transformed coefficients that needs to be pro-
tected to avoid the quantization noise. Therefore, ∆QPdec is adjusted (depending
on the SAD and TBR) to preserve the transformed coefficients of stationary MBs
(see Eqs. A.5.7–A.5.12).

Step 2) Controlling Target Bit Violations at BU-Level: As image based decision
may lead to a target bit violation when operating at BU level, the proposed
scheme computes ∆QPdec_control to adjust ∆QPdec depending upon the error be-

QPBi_slice = QPBi_prev + �QP + α(! isRef ()) − β(isRef ()& isHighTexture())

IF (isSceneCut())α = 0, β = 2 ELSE α = 1, β = 1

QPMIN = 12 − (TBR in bps > 2650∗#MBs)∗2

QPMAX = 42 + (TBR in bps < 165∗#MBs)∗3

QPMAX = QPMAX − 4 +
⌊(

1 −
BuffFullness

BuffFullnessMax

)
∗ 4

⌋

Appendix A: A Multi-Level Rate Control

www.manaraa.com

198

Fig. A.5   Basic unit (BU) level RC with texture and motion based QP adjustments

Appendix

www.manaraa.com

199

tween achieved and target bits till the coded BU ( e(t)BU). At first, the target bits
for one BU ( TBU_Bits) and for all coded BUs ( TCodedBUs_Bits) are computed, where
NBU_Coded is the number of already encoded BUs. Afterwards, the bit error is
computed which is then used to calculate ∆QPdec_control. ABUk_Bits is the number of
already produced bits for all coded BUs in the current frame/slice. ∆QPdec_control
is added in ∆QPdec which is then clipped between ±  4 to restrict the possible vio-
lations of target bit budget and is added in QPslice to get QPBU.

Step 3) Image-/Motion-Based Macroblock Prioritizations: This step is optional for
low bit rate coding scenarios and performs an image-/motion-based Macrob-
lock Prioritization to capture eye-catching regions. The human eye is sensitive
to fast motion and highly textured scenes that are hard to encode at low bit rates.
Therefore, it is beneficial to spend more bits to such regions at the cost of a small
degradation in stationary background regions. MBs with high texture and mo-
tion information are prioritized as regions of interest (that capture the attention
of the human eye) and QPdec is lowered in that case (see Eq. A.5.13). On the
contrary, QPdec is increased for homogeneous and stationary MBs, which are not
of high user interest (see Eq. A.5.14). Afterwards, QPdec is clipped between ±   4
and added in QPBU to get QPMB.

A.3  Evaluation and Results

The proposed multi-level Rate Control (RC) scheme is compared with various RC
modes (especially RC-Mode-3 [LT08] which is the latest one to handle multiple
frame types and offers better quality than other RC Modes) of H.264. For a pure
video quality comparison following test conditions are considered: exhaustive
RDO-MD, UMHexagonS, 16 search range, 1 reference frame, GOP = 100, CAVLC,
using different coding structures. The thresholds and test conditions presented in
Sect. 4.3.2 are used for the following experiments. Figure A.6 shows the R-D curves
for Carphone (QCIF, IPPP) and American Football (SIF, IBBP). Figure A.6 shows
that the multi-level RC scheme achieves always better PSNR (avg. 1 and 0.5 dB)
than RC-Mode-3.

Fig. A.6   RD-curves comparison of the proposed multi-level RC with RC-mode-3 for carphone
(QCIF, IPPP) and American Football (SIF, IBBP)

Appendix A: A Multi-Level Rate Control

www.manaraa.com

200

Figure A.7 shows the Mean Bit Estimation Error (MBEE) and the PSNR variation
(σPSNR) for encoding various sequences using the multi-level RC and RC-Mode-0,2,3.
Each bar is the averaged (MBEE, σPSNR) value over 7 bit rates (64 Kbps–4 Mbps).

Figure A.7 shows that the multi-level RC outperforms all RC modes in terms of
the buffer and visual quality smoothness and achieves the target bit rate more ac-
curately. Figure A.7 illustrates that the multi-level RC achieves up to 81.4, 81.9, and
77.8% (avg. 61.7, 62.3, and 63.9%) reduced MBEE compared to RC-Mode-0,2,3,
respectively. Moreover, the multi-level RC provides up to 86, 87.9, and 95.9% (avg.
61.9, 62, and 72.4%) reduced σPSNR compared to RC-Mode-0,2,3, respectively.

Figure A.8 compares the PSNR and Rate of the multi-level RC with RC-Mode-3
on frame-basis when encoding a combination of Rafting and Football CIF sequenc-
es. This fast motion sequence contains scene cuts at every 50th frame. Compared
to RC-Mode-3, the multi-level RC achieves on average 67% less σPSNR and 65.46%
reduced MBEE. At the start, RC-Mode-3 performs well but requires a much higher
amount (≈ 2×) of bits, therefore the overall RD ratio is similar to the multi-level RC.
As soon as scene cuts occur, the quality of the RC-Mode-3 decreases. After 100
frames, RC-Mode-3 is already worse than the multi-level RC and after 150 frames,
the quality of the RC-Mode-3 degrades severely. After 15–20 frames the multi-level
RC achieves a smooth buffer fullness and less σPSNR. After 100 frames, it achieves
an always better PSNR.

Figure A.9 presents frame-wise PSNR and Rate comparison of the multi-level
RC scheme with RC-Mode-0 for encoding the adapted Susie sequence for check-
ing the robustness of RCs. During the first 60 frames, the multi-level RC achieves
a slightly better PSNR while requiring almost the same amount of bits. From frame
61 onwards, the frames contain heavy noise. The multi-level RC scheme recognizes

Appendix

Fig. A.7   MBEE comparison of the multi-level RC with three different RC modes

www.manaraa.com

201

this fact and adjusts faster to the target bit budget without wasting extra bits. On the
contrary, RC-Mode-0 adjusts itself slower (frames 60–75) to the target bit budget
when facing the transitions from dark-to-noisy frames. As a result, RC-Mode-0 suf-
fers from lower PSNR in the subsequent frames and gives high σPSNR. Overall, RC-
Mode-0 achieves an average PSNR of 38.21 dB while the multi-level RC achieves
41.18 dB (i.e., a gain of 2.97 dB).

The efficiency of image-statistics and motion based Macroblock Prioritizations
can be seen in Fig. A.10 that shows the 14th reconstructed frame of American Foot-
ball when encoded with the multi-level RC (Left) and RC-Mode-0 (Right). The
multi-level RC encodes the moving helmets and arms of the players (eye-catching
regions) with better quality compared to RC-Mode-0 while blurring the grassy
background, which is less important than the players. Therefore, the proposed
multi-level RC scheme is superior in terms of user interests.

Fig. A.9   Frame-wise comparison of the multi-level RC with RC-mode-0 for Susie mixed CIF
sequence ( Bright, Dark, Noisy) at 2 Mbps@30 fps

Fig. A.8   Frame-wise comparison of the multi-level RC with RC-mode-3 for fast motion com-
bined CIF sequences encoded at 2 Mbps@30 fps

Appendix A: A Multi-Level Rate Control

www.manaraa.com

202

Complexity:  On Intel Core2Duo T5500 (1.66 GHz), on average, the multi-level
RC requires 0.54 MCycles while RC-Mode-0 requires 9 MCycles for encoding one
frame, i.e., the multi-level RC is 16.6× faster than RC-Mode-0.

Appendix B: Simulation Environment the H.264 Video
Encoder Demonstration

This appendix presents the simulation environment (used in this monograph) and
the demonstration of the in-house developed H.264 video encoder (in the scope of
this monograph) on RISPP dynamically reconfigurable processor and Texas Instru-
ments’ DM6437 Digital Media Processor. For researching the adaptive low-power
reconfigurable processor architectures, the simulator for dynamically reconfigu-
rable processors [Bau09] was extended with run-time energy management modules.
Before moving to the details of the video encoder demonstration, the simulation
methodology is described in the following.

B.1  Implementation and Simulation Environment

The implementation and simulation environment consists of (a) ArchC-Simulator
for a SPARC-V8 architecture [ARB+05] in order to generate a branch trace of the
application and functional testing on the core processor, (b) Simulator for dynami-
cally reconfigurable processors (in this case it is a RISPP Simulator [Bau09]), (c)
Xilinx ISE for implementing the Data Paths and ModelSim for simulations in order
to perform functional testing, (d) gcc compiler on a Linux machine for PC-based

Appendix

Fig. A.10   Evaluating the image and motion based MB prioritizations (Note: All excerpts are 2×
zoomed using nearest neighbor interpolation)

www.manaraa.com

203

evaluation. The simulation methodology is partitioned into four phases, (1) Design
phase, (2) Implementation phase, (3) Power Measurement and Estimation phase,
and (4) Simulation phase.

In the design phase, first the application is executed in the ArchC-Simulator and
the output is compared with the output of the original PC-based execution (i.e., us-
ing the original target platform of the application). When compiling for the ArchC-
Simulator several modifications might be required, e.g., it is not possible to use the
same name for global variables and methods twice. Afterwards, the application is
executed in the ArchC-Simulator, to verify the correct output. For designing the
Custom Instructions (CIs), information about the computational hot spot(s) of the
application is required. This is obtained by profiling the application using the ‘val-
grind tool suite’ [Net04a, b]. After gathering this information CIs for the hot spots
are designed, while considering the constraints predetermined by the architecture
(i.e., RISPP [Bau09] in this case).

In the implementation phase, the ArchC-Simulator and the RISPP Simulator
are made aware of the new CIs (by adding, e.g., name and opcode to an XML-file
containing the information about all CIs). The CIs are programmed as assembly
instructions in the application and the data structures are adapted accordingly for in-
tegrating the CIs. Furthermore, the behavior of CIs is added to the ArchC-Simulator
for functional correctness and valid output generation. The modified application
is tested on the extended simulator and in order to assure correct functionality the
output of the original and modified applications are compared. Moreover, the Data
Paths are implemented in VHDL. The behavior of Data Paths is simulated and fi-
nally the VHDL-Code is synthesized using the Xilinx ISE tool chain in order to
provide information about the hardware requirements (number of flip flops, slices,
frequency, etc.). This information is added to the XML-file which is provided to the
RISPP Simulator. Additionally the functionality of the complete CI and the com-
posing Data Paths is implemented in software (i.e., using the core instruction set
architecture, cISA) and the execution times are measured. In the next step, the CI
graph is generated showing the Data Paths as nodes connected with edges (repre-

Fig. B.1   Simulation methodology showing various steps of the simulation procedure

Appendix B: Simulation Environment the H.264 Video Encoder Demonstration

www.manaraa.com

204

senting the connections). This graph is also fed as an input to the RISPP Simulator.
An in-house developed tool automatically generates schedules for various Imple-
mentation Versions considering different area constraints (i.e., different number of
given Data Path Containers, DPCs). The information is stored in the data structures
internal to the RISPP Simulator.

The power estimation and measurement phase is explained in Chap. 6 and
Sect. 3.4. The measured power of the Data Paths is added to the XML-file that
contains the area and latency information of each Data Path. Moreover, the average
power and energy consumption of different Implementation Versions is estimated
using the proposed power model (see details in Sect. 3.4), which is later on stored
in the Custom Instructions data structure of the RISPP Simulator.

In the simulation phase, the application is simulated using the ArchC-Simulator
which provides output files (e.g., branch trace) that serves as the input to the RISPP
Simulator that provides an estimate of the energy consumption and performance of
the application. At the end the results (energy consumption, performance, etc.) are
analyzed. To investigate the concepts and algorithms for run-time energy manage-
ment with CI-level muting (as proposed in the scope of this monograph), the RISPP
Simulator [BSH09a] is extended with several new modules. These modules are (a)
Run-Time Energy Management, (b) Power-Estimation, and (c) Muting Manager
(see Fig. B.2). Besides the application binary, branch trace, and the core instruction
set architecture (cISA), the power model for dynamically reconfigurable processors

Appendix

Fig. B.2   Reconfigurable processor simulator with the extensions implemented in the scope of this
monograph for run-time adaptive energy-management

www.manaraa.com

205

(see details in Sect. 3.4) is passed as input. Figure B.2 shows the extended simulator
as a UML class diagram that consists of three major parts:

•	 the pipeline of the core processor and the run-time system with energy manage-
ment scheme; it simulates the pipeline behavior and manages the executions,
energy management, power estimation, reconfigurations, etc.

•	 the Custom Instructions (CIs) with their composing Data Paths and various
Implementation Versions; it is represented by a data structure containing the
performance and energy properties of different Data Paths and Implementation
Versions, etc., and

•	 the FPGA with various DPCs with management of the Data Paths loaded in the
DPCs, the muting mode of different DPCs, etc.

The information about the CIs, Implementation Versions (like name, CI opcode and
instruction format, latency and average power consumption, etc.) and their com-
posing Data Paths is fed through an XML-file (as discussed above). Moreover, the
area and power information about the Data Paths is also provided in this XML-file.
The pipeline simulates the application binary and the branch trace is considered
to imitate the control flow of the application. In the current setup, the model of a
SPARC-V8 architecture is modeled with five pipeline stages. Note that the register
file contents and the data memory accesses are not simulated in the RISPP Simula-
tor (see further details in [Bau09]). Each load and store instruction requires two
cycles considering a 100% cache hit.

When a Forecast Instruction is encountered to hint about the upcoming CIs, the
run-time energy management scheme is triggered that determines the energy mini-
mizing instruction set and the appropriate muting modes for the set of temporarily
unused CIs. The information about the execution frequency of CIs is obtained from
the Online Monitoring and Prediction module. The corresponding muting mode is
then sent to the Muting Manager module that issues the shutdown signals to the
Logic and/or Configuration SRAM of the DPCs corresponding to the muted CIs.
The energy consumption of the application is estimated at run time at different time
intervals, between two Forecast Blocks, or after the complete application execution.
After the muting mode is configured, the Data Paths to be reconfigured are pushed
into the Data Path Loading Queue (see Fig. B.2) and the reconfiguration sequence
is determined. The CI Execution Unit controls the execution of CIs using cISA or
using the available Implementation Versions.

B.2  H.264 Video Encoder on the RISPP Hardware Prototype

Figure B.3a shows the H.264 video encoder (developed in the scope of this mono-
graph) executing on the RISPP hardware prototype (based on an Avnet Xilinx Vir-
tex-4 LX160 Development Kit; “ADS-XLX-V4LX-DEV160-G”, [Avn09])1. The

1  This board contains a Xilinx Virtex-4 XC4VLX160-FF1513 FPGA [Xil08b].

Appendix B: Simulation Environment the H.264 Video Encoder Demonstration

www.manaraa.com

206

internal floorplan (after place & route) of the RISPP processor prototype (executing
at 50 MHz) with the video preprocessing IP-core is provided in Fig. B.3b [Bau09].
First the raw (RGB) video in an interlaced format is obtained from the camera. The
video preprocessing core performs the de-interlacing, format conversion (RGB to
YUV 4:4:4), and color sub-sampling (YUV 4:4:4 to YUV 4:2:0). A triple circular
buffer mechanism is implemented that provides storage for the current and ref-
erence video frames along with the next frame written by the camera (while the
current frame is being encoded). The CIs (e.g., for Motion Estimation) access the
current and the reference frame buffers using one 128-bit port for each buffer. After
the current frame is encoded and overwritten by the reconstructed Macroblocks
data, the buffer rotation is performed, i.e., the next frame becomes the current, the
current frame becomes the reference, and the reference frame buffer becomes the
next frame in which the camera writes the new data. Note, this rotation is performed
in hardware in order to simplify the software implementation [Bau09]. The address
of the current and reference frames are unchanged. The reference frame is displayed
via a VGA output periphery module. The main encoder program is executing on the
core processor (in this case Leon2 core pipeline), while the Data Paths for the Cus-
tom Instructions (CIs) are loaded on the DPCs. It can be noticed in Fig. B.3b that
there are currently 10 DPCs connected with Bus Connectors. The run-time system
executes on the MicroBlaze. Further details on the RISPP prototype can be found
in [Bau09].

Appendix

Fig. B.3   a H.264 video encoder executing on the RISPP prototype; b Floorplan of the RISPP
prototype implementation on the Xilinx Virtex-4 LX 160 FPGA

www.manaraa.com

207

B.3  H.264 Video Encoder on the Texas Instruments’ DM6437
Digital Media Processor

Figure B.4 demonstrates the H.264 video encoder (developed in the scope of this
monograph) executing on the Texas Instruments’ (TI) DM6437 Digital Video De-
velopment Platform (TMDSVDP6437) [Ins08a] with TMS320DM6437 Digital
Media Processor [Ins08b]. Figure B.5 illustrates the processing flow of different
functional blocks (video capture, format and resolution conversion, encoding, and
video display) of the video recording system executing on the TMDSVDP6437
platform. The step-by-step flow is explained in the following.

•	 The video data from charge-coupled device (CCD) is obtained by the Video Pro-
cessing Front End (VPFE) driver using an on-board tvp5146 decoder. The for-
mat of the captured video is YUV 4:2:2 interleaved with a resolution of 720 × 576
(D1, PAL).

•	 To support various video resolutions, down-scaling is performed as an optional
step using the Resizer module of VPFE. For instance, in the demonstration of
Fig. B.4, the input video is down-scaled from 720 × 576–352 × 288 (Common
Intermediate Format, CIF) resolution. The resizer is a hardware implemented
poly-phase filter for image scaling operations with a capability of scaling up to
four times. Note, the choice of the filter type (four-phase seven-tap filter or eight-
phase four-tap filter) is done automatically by the hardware based on the scaling
ratio and it is not changeable by the software. The resizer can operate on either
YUV 4:2:2 interleaved format or separated single color plane.

•	 The video encoders typically require videos in YUV 4:2:0 format. Therefore,
the format of the input video is converted to YUV 4:2:0 planar using EDMA3

Fig. B.4   H.264 video encoder executing on the TI’ DM6437 DSP board

Appendix B: Simulation Environment the H.264 Video Encoder Demonstration

www.manaraa.com

208

(Enhanced Direct Memory Access) module. EDMA3 provides user-programmed
data transfers between two memory-mapped slave endpoints on the device.

•	 Afterwards, the video encoder (executing on the core DM6437 processor with
C64x + instruction set and DaVinci video technology) processes the video frame
for encoding. Various modules are optimized using the specialized assembly
with operations of sub-word level processing.

•	 The reconstructed video is displayed on the TFT LCD monitor. For displaying,
the format of the reconstructed video is converted from YUV 4:2:0 planar to
YUV 4:2:2 interleave using the EDMA3 module. This format is required by
the Video Processing Back End (VPBE). Afterwards, the video is up-scaled to
720 × 576 (D1, PAL) and sent to display using the VPBE driver.

Appendix C: The CES Video Analyzer Tool

In the scope of this monograph, a video analysis tool (Fig. C.1) has been developed
named “CES Video Analyzer” in order to analyze the subjective quality of various
algorithms. Moreover, it is also used to subjectively learn about the relationship
between the optimal coding modes and various video properties. The CES Video
Analyzer tool has various features like playback of raw YUV video files, computing
and displaying spatial and temporal video properties, a framework for researching
new Motion Estimators. The fetures of the CES Video Analyzer tool are described
in the following.

•	 Playback of raw YUV video files of different resolutions with different frame
rates (see Label 1 in Fig. C.1)

−	 possibility to view separate components of video frames Y, U and V
−	 open and playback of multiple video files for comparison in a frame-wise

synchronized fashion

•	 Extract, display, and output the properties of a video (Gradient, Variance, Tex-
ture, Brightness, Contrast, etc.) at frame and/or Macroblock levels (see Label 8)

Fig. B.5   Flow for porting H.264 Encoder on DM6437 digital signal processor

Appendix

www.manaraa.com

209

Fig. C.1   The CES video analyzer tool showing the research framework for motion estimation,
video merging, and texture analysis

Appendix C: The CES Video Analyzer Tool

www.manaraa.com

210

−	 display the edges in different colors or threshold based edge coloring
−	 display the edge maps for texture analysis of various edge-detection algo-

rithms (see Label 6)

•	 Coding mode distribution analysis (see Label 7)
•	 A framework for researching and evaluating different Motion Estimators (see

Label 2)

−	 multiple Motion Estimation stages can be defined with Initial Search Point
Prediction and pattern types

−	 different patterns can be easily configured and compared
−	 search range can be configured
−	 the final configuration can be stored in the list of pre-stored Motion Estimators

•	 Comparing different Motion Estimators

−	 plotting the motion vectors for subjective motion analysis (see Label 3)
−	 color of motion vectors can be selected
−	 different standard Motion Estimation algorithms are provided for comparison

(Full Search, Spiral Search, Three Step Search, and UMHexagonS)
−	 output the information about the motion vectors in a text file (comma sepa-

rated format)

•	 Computing the Peak Signal-to-Noise Ratio (PSNR) at frame or video level (see
Label 9)

•	 Create new test video sequences with different brightness, noise, blur factors

−	 save the complete video file or a specified set of frames

•	 Create new test video sequences by merging different video sequences in order
to realize scene cuts and videos with diverse properties within a given frame (see
Label 4)

−	 a border between the video frames can be added (see Label 5)
−	 the color and size of the border between the frames can be selected
−	 the video after the last frame can be stopped or replayed from the start in case

videos with different number of frames are merged with each other

•	 Zoom/Upscale using different filters
•	 Save individual frames in different formats (Bitmap, Jpeg, Png, Gif, Tiff or Win-

dows Metafile)

Kindly note that this tool is actively used in further research projects. It is developed
to help the research community (researchers, developers, students, etc.) of embed-
ded multimedia systems in their research and educational projects (i.e., to perform
quick analysis/evaluation of videos and different algorithms). Further extensions of
this tool are to support the playback and analysis of multiview video sequence and
analyzing various video pre- and post-processing filters for video quality enhance-
ment and restoration.

Appendix

www.manaraa.com

211

Bibliography

[ADVLN05]	� E. Arsura, L. Del Vecchio, R. Lancini, and L. Nisti, “Fast macroblock intra and
inter modes selection for h.264/avc”, in Proceedings of the 2005 International
Conference on Multimedia and Expo (ICME), July 2005, pp. 378–381.

[Ae06]	� K. Agarwal and et, “Power gating with multiple sleep modes”, in IEEE Interna-
tional Symposium on Quality Electronic Design (ISQED), 2006, pp. 633–637.

[Aer]	� Aeroflex Gaisler, “Homepage of the Leon processor”, http://www.gaisler.com/le-
onmain.html.

[AKL+07]	� C. Arbelo, A. Kanstein, S. Lopez, J. F. Lopez, M. Berekovic, R. Sarmiento, and
J.-Y. Mignolet, “Mapping control-intensive video kernels onto a coarse-grain re-
configurable architecture: the h.264/avc deblocking filter”, in Proceedings of the
10th conference on Design, Automation and Test in Europe (DATE), April 2007,
pp. 1–6.

[Ama06]	� H. Amano, “A survey on dynamically reconfigurable processors”, IEICE Transac-
tion on Communication, vol. E89-B, no. 12, pp. 3179–3187, December 2006.

[AML07]	� E. Akyol, D. Mukherjee, and Y. Liu, “Complexity control for real-time video cod-
ing”, in Proceedings of the 2007 International Conference on Image Processing
(ICIP), October 2007, pp. I–77–I–80.

[AN04]	� J. H. Anderson and F. N. Najm, “Power estimation techniques for fpgas”, IEEE
Transaction on Very Large Scale Integration (TVLSI), vol. 12, no. 10, pp. 1015–
1027, 2004.

[ARB+05]	� R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C. Araujo, and E. Barros, “The
ArchC architecture description language and tools”, International Journal of Par-
allel Programming, vol. 33, no. 5, pp. 453–484, October 2005.

[ARC]	� ARC International, “ARCtangent processor”, http://www.arc.com/configurables/.
[Ari08]	� Arizona State University, “Video Traces Research Group”, http://trace.eas.asu.

edu/yuv/index.html, 2008.
[ASI]	� ASIP Solutions, Inc., “Homepage of ASIP Meister”, http://asip-solutions.com/.
[Avn09]	� Avnet, Inc., “Avnet electronics marketing”, http://avnetexpress.avnet.com, 2009.
[Bau09]	� L. Bauer, “Rispp: A run-time adaptive reconfigurable embedded processor”, in

PhD Dissertation, University of Karlsruhe, Germany, December 2009.
[Ber09]	� C. V. Berkel, “Multi-core for mobile phones”, in Proceedings of the 12th confer-

ence on Design, Automation and Test in Europe (DATE), April 2009, pp. 1260
–1265.

[BHU03]	� J. Becker, M. Huebner, and M. Ullmann, “Power estimation and power measure-
ment of xilinx virtex fpgas: Trade-offs and limitations”, in Symposium on Inte-
grated Circuits and Systems Design (SBCCI), 2003, pp. 283–288.

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3, © Springer Science+Business Media LLC 2011

www.manaraa.com

212

[BKD+05]	� M. Berekovic, A. Kanstein, D. Desmet, A. Bartic, B. Mei, and J. Mignolet, “Map-
ping of video compression algorithms on the adres coarse-grain reconfigurable
array”, in Workshop on Multimedia and Stream Processors, November 2005.

[BL00]	� F. Barat and R. Lauwereins, “Reconfigurable instruction set processors: A survey”,
in Proceedings of the 11th IEEE International Workshop on Rapid System Proto-
typing (RSP), June 2000, pp. 168–173.

[Bob07]	� C. Bobda, Introduction to Reconfigurable Computing: Architectures, Algorithms,
and Applications. Springer Publishing Company, Incorporated, June 2007.

[BSH08a]	� L. Bauer, M. Shafique, and J. Henkel, “A computation- and communication- infra-
structure for modular special instructions in a dynamically reconfigurable proces-
sor”, in 18th International Conference on Field Programmable Logic and Applica-
tions (FPL), September 2008, pp. 203–208.

[BSH08b]	� L. Bauer, M. Shafique, and J. Henkel, “Efficient resource utilization for an exten-
sible processor through dynamic instruction set adaptation”, IEEE Transactions
on Very Large Scale Integration Systems (TVLSI), Special Section on Application-
Specific Processors, vol. 16, no. 10, pp. 1295–1308, October 2008.

[BSH08c]	� L. Bauer, M. Shafique, and J. Henkel, “Run-time instruction set selection in a
transmutable embedded processor”, in Proceedings of the 45th annual Conference
on Design Automation (DAC), June 2008, pp. 56–61.

[BSH09a]	� L. Bauer, M. Shafique, and J. Henkel, “Cross-architectural design space explora-
tion tool for reconfigurable processors”, in Proceedings of the 12th conference on
Design, Automation and Test in Europe (DATE), April 2009, pp. 958–963.

[BSH09b]	� L. Bauer, M. Shafique, and J. Henkel, “Mindeg: A performance-guided replace-
ment policy for run-time reconfigurable accelerators”, in IEEE International Con-
ference on Hardware-Software Codesign and System Synthesis (CODES + ISSS),
October 2009, pp. 335–342.

[BSKH07]	� L. Bauer, M. Shafique, S. Kramer, and J. Henkel, “RISPP: Rotating Instruction Set
Processing Platform”, in Proceedings of the 44th annual Conference on Design
Automation (DAC), June 2007, pp. 791–796.

[BSKH08]	� L. Bauer, M. Shafique, S. Kreutz, and J. Henkel, “Run-time system for an exten-
sible embedded processor with dynamic instruction set”, in Proceedings of the
conference on Design, Automation and Test in Europe (DATE), March 2008, pp.
752–757.

[BSTH07]	� L. Bauer, M. Shafique, D. Teufel, and J. Henkel, “A self-adaptive extensible em-
bedded processor”, in First International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), July 2007, pp. 344–347.

[BTM00]	� D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-
level power analysis and optimizations”, in International Symposium on Computer
Architecture (ISCA), 2000, pp. 83–94.

[CC01]	� J. E. Carrillo and P. Chow, “The effect of reconfigurable units in superscalar pro-
cessors”, in Proceedings of the ACM/SIGDA eighth international symposium on
Field Programmable Gate Arrays (FPGA), February 2001, pp. 141–150.

[CC07]	� C.-M. Chen and C.-H. Chen, “An efficient pipeline architecture for deblocking
filter in h.264/avc”, IEICE Transactions on Information and Systems, vol. E90-D,
no. 1, pp. 99–107, 2007.

[CCH+06]	� T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, and L.-G.
Chen, “Analysis and architecture design of an hdtv720p 30 frames/s h.264/avc
encoder”, IEEE Transactions on Circuits and Systems for Video Technology (TC-
SVT), vol. 16, no. 6, pp. 673–688, 2006.

[CCLR07]	� N. Cherniavsky, A. C. Cavender, R. E. Ladner, and E. A. Riskin, “Variable frame
rate for low power mobile sign language communication”, in Proceedings of the
2007 ACM SIGACCESS Conference on Computers and Accessibility (ASSETS),
October 2007, pp. 163–170.

Bibliography

www.manaraa.com

213

[CCT+09]	� Y.-H. Chen, T.-C. Chen, C.-Y. Tsai, S.-F. Tsai, and L.-G. Chen, “Algorithm and
architecture design of power-oriented h.264/avc baseline profile encoder for por-
table devices”, IEEE Transactions on Circuits and Systems for Video Technology
(TCSVT), vol. 19, no. 8, pp. 1118–1128, 2009.

[CCW+09]	� H.-C. Chang, J.-W. Chen, B.-T. Wu, C.-L. Su, J.-S. Wang, and J.-I. Guo, “A dy-
namic quality-adjustable h.264 video encoder for power-aware video applica-
tions”, IEEE Transactions on Circuits and Systems for Video Technology (TCSVT),
vol. 19, no. 12, pp. 1739–1754, 2009.

[CH02]	� K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and
software”, ACM Computing Surveys (CSUR), vol. 34, no. 2, pp. 171–210, June
2002.

[CHC03]	� B. Calhoun, F. Honore, and A. Chandrakasan, “Design methodology for fine-
grained leakage control in mtcmos”, in Proceedings of the 2003 International
Symposium on Low Power Electronics and Design (ISLPED), August 2003, pp.
104–109.

[CJMP03]	� S. Choi, J.-W. Jang, S. Mohanty, and V. K. Prasanna, “Domain-specific modeling
for rapid energy estimation of reconfigurable architectures”, The Journal of Super-
computing, vol. 26, pp. 256–281, 2003.

[CK08]	� Y.-K. Chen and S. Y. Kung, “Trend and challenge on system-on-a-chip designs”,
Journal of VLSI Signal Processing Systems (JSPS), vol. 53, no. 1–2, pp. 217–229,
2008.

[CLC06]	� T. C. Chen, C. J. Lian, and L. G. Chen, “Hardware architecture design of an h.264/
avc video codec”, in Asia and South Pacific Conference on Design Automation
(ASP-DAC), 2006, pp. 750–757.

[CLZG06]	� Y.-K. Chen, E. Q. Li, X. Zhou, and S. L. Ge, “Implementation of h.264 encoder
and decoder on personal computers”, Journal of Visual Communications and Im-
age Representations (JVCIR), vol. 17, no. 2, pp. 509–532, April 2006.

[CoW]	� CoWare Inc., “LISATek”, http://www.coware.com/.
[CWL+05]	� L. Cheng, P. Wong, F. Li, Y. Lin, and L. He, “Device and architecture co-opti-

mization for fpga power reduction”, in Proceedings of 42nd ACM IEEE Design
Automation Conference (DAC), 2005, pp. 915–920.

[CZH02]	� Z. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional pel motion estimation
for jvt”, in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T VCEG 6th Meeting,
December 2002, pp. Document JVT–F017.

[Dal99]	� M. Dales, “The Proteus processor—a conventional cpu with reconfigurable func-
tionality”, in Proceedings of the 9th International Workshop on Field-Programma-
ble Logic and Applications (FPL), August 1999, pp. 431–437.

[Dal03]	� M. Dales, “Managing a reconfigurable processor in a general purpose workstation
environment”, in Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE), March 2003, pp. 980–985.

[Das99]	� I. Das, “On characterizing the ‘knee’ of the pareto curve based on normal-bound-
ary intersection”, Structural and Multidisciplinary Optimization, vol. 13, no. 3, pp.
107–115, 1999.

[DGHJ05]	� L. Deng, W. Gao, M. Hu, and Z. Z. Ji, “An efficient hardware implementation for
motion estimation of avc standard”, IEEE Transactions on Consumer Electronics
(TCE), vol. 51, no. 4, pp. 1360–1366, November 2005.

[Esp04]	� M. Esponda, “Trends in hardware architecture for mobile devices”, in Institut für
Informatik, Freie Universität Berlin, November 2004.

[EY05]	� M. Etoh and T. Yoshimura, “Advances in wireless video delivery”, Proceedings of
the IEEE, vol. 93, no. 1, pp. 111–122, 2005.

[FHR+10]	� G. Frantz, J. Henkel, J. Rabaey, T. Schneider, M. Wolf, and U. Batur, “Ultra-low
power signal processing”, IEEE Signal Processing Magazine, vol. 27, no. 2, pp.
149–154, 2010.

Bibliography

www.manaraa.com

214

[Ge04]	� A. Gayasen and et, “Reducing leakage energy in fpgas using region-constrained
placement”, in ACM Internaltional Symposium on Field Programmable Gate Ar-
rays (FPGA), 2004, pp. 51–58.

[Ge07]	� A. H. Gholamipour and etAl, “Energy-aware co-processor selection for embedded
processors on fpgas”, in International Conference on Computer DDesign (ICCD),
2007, pp. 158–163.

[GE08]	� M. Goraczko and EtAl, “Energy-optimal software partitioning in heterogeneous
multiprocessor embedded systems”, in Proceedings of 45th ACM IEEE Design
Automation Conference (DAC), 2008, pp. 191–196.

[GRE+01]	� M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,
“MiBench: A free, commercially representative embedded benchmark suite”, in
Annual IEEE International Workshop Workload Characterization (WWC), De-
cember 2001, pp. 3–14.

[GW02]	� R. C. Gonzales and R. E. Woods, Digital Image Processing. Upper Saddle River,
New Jersey, USA: Prentice-Hall Inc., 2002.

[GY05]	� C. Grecos and M. Y. Yang, “Fast inter mode prediction for p slices in the h264
video coding standard”, IEEE Transactions on Broadcadting (TB), pp. 256–263,
2005.

[Har01]	� R. Hartenstein, “A decade of reconfigurable computing: a visionary retrospec-
tive”, in Proceedings of the conference on Design, Automation and Test in Europe
(DATE), March 2001, pp. 642–649.

[Hen03]	� J. Henkel, “Closing the soc design gap”, IEEE Computers, vol. 36, no. 9, pp.
119–121, September 2003.

[HL07]	� P.-A. Hsiung and C.-W. Liu, “Exploiting hardware and software low power tech-
niques for energy efficient co-scheduling in dynamically reconfigurable systems”,
in 17th International Conference on Field Programmable Logic and Applications
(FPL), 2007, pp. 165–170.

[HLLW08]	� C. H. Ho, P. H. W. Leong, W. Luk, and S. J. E. Wilton, “Rapid estimation of power
consumption for hybrid fpgas”, in 18th International Conference on Field Pro-
grammable Logic and Applications (FPL), 2008, pp. 227–232.

[HM09]	� H. P. Huynh and T. Mitra, “Runtime adaptive extensible embedded processors—a
survey”, in Proceedings of the 9th International Workshop on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS), July 2009, pp.
215–225.

[HP07]	� H.Alzoubi and W. D. Pan, “Efficient global motion estimation using fixed and ran-
dom subsampling patterns”, in Proceedings of the 2007 International Conference
on Image Processing (ICIP), October 2007, pp. I–477–I–480.

[Hui10]	� Hui Yong Kim, “Next generation video coding standardization”, http://www.itfo-
rum.kr/board/include/download.php?no=144&db=board3&fileno=2, 2010.

[Ins08a]	� T. Instruments, “TMDSVDP6437: DM6437 Digital Video Development Plat-
form”, http://focus.ti.com/docs/toolsw/folders/print/tmdsvdp6437.html, 2008.

[Ins08b]	� T. Instruments, “TMS320DM6437 Digital Media Processor”, http://focus.ti.com/
docs/prod/folders/print/tms320dm6437.html, 2008.

[ITI]	� ITIV & CES, “KAHRISMA: KArlsruhe’s Hypermorphic Reconfigurable-Instruc-
tion-Set Multi-grained-Array processor”, http://www.kahrisma.org/.

[ITU05]	� ITU-T Rec. H.264 and ISO/IEC 14496-10:2005 (E) (MPEG-4 AVC), “Advanced
video coding for generic audiovisual services”, 2005.

[ITU09]	� ITU-T Rec. H.264 and ISO/IEC 14496-10:2005 (E) (MPEG-4 AVC), “Advanced
video coding for generic audiovisual services”, 2009.

[JC99]	� J. A. Jacob and P. Chow, “Memory interfacing and instruction specification for
reconfigurable processors”, in Proceedings of the ACM/SIGDA 7th international
symposium on Field Programmable Gate Arrays (FPGA), February 1999, pp.
145–154.

Bibliography

www.manaraa.com

215

[JC04]	� X. Jing and L.-P. Chau, “Fast approach for h.264 inter mode decision”, in Elec-
tronic Letters, 2004, pp. 1050–1052.

[JL03]	� B. W. Jeon and J. Y. Lee, “Fast mode decision for h.264”, in Joint Video Team
(JVT) of ISO/IECMPEG & ITU-T VCEG 8th Meeting, 2003, pp. Document JVT–
J033.

[JM05]	� M. A. Johnson and M. H. Moradi, PID Control: New Identification and Design
Methods. New York, NY, USA: Springer-Verlag New York, Inc., 2005.

[Joi08]	� Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, “JVT-AB204: Joint
draft 8.0 on multiview video coding”, 2008.

[Joi10]	� Joint Collaborative Team (JCT) on Video Coding Standard De-
velopment, “H.265: High efficiency video coding”, http://
w w w. h 2 6 5 . n e t / 2 0 1 0 / 0 1 / f i n a l - c a l l - f o r - p r o p o s a l s - o n - h n g v c - h v c -
issued-jointly-by-vceg-and-mpeg.html, 2010.

[JVT10]	� JVT, “H.264 codec”, http://iphome.hhi.de/suehring/tml/index.htm, 2010.
[KBS+10]	� R. König, L. Bauer, T. Stripf, M. Shafique, W. Ahmed, J. Becker, and J. Hen-

kel, “KAHRISMA: A novel hypermorphic reconfigurable-instruction-set multi-
grained-array architecture”, in Proceedings of the conference on Design, Automa-
tion and Test in Europe (DATE), March 2010, pp. 819–824.

[KC07]	� B.-G. Kim and C.-S. Cho, “A fast inter-mode decision algorithm based on macro-
block tracking for p slices in the h.264/avc video standard”, in Proceedings of the
2007 International Conference on Image Processing (ICIP), October 2007, pp.
V–301–V–304.

[KL07]	� H. Kalva and J.-B. Lee, “The vc-1 video coding standard”, IEEE Transactions on
Multimedia (TM), vol. 14, no. 4, pp. 88–91, October-December 2007.

[Kle10]	� M. Klein, “Wp298: Power consumption at 40 and 45 nm”, http://www.xilinx.com/
support/documentation, 2010.

[KLHS06]	� S. D. Kim, J. H. Lee, C. J. Hyun, and M. H. Sunwoo, “Asip approach for imple-
mentation of h.264/avc”, in Asia and South Pacific Conference on Design Automa-
tion (ASP-DAC), Jan 2006, pp. 758–764.

[KR07]	� I. Kuon and J. Rose, “Measuring the gap between fpgas and asics”, IEEE Trans-
action on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 26, no. 2, pp. 203–215, 2007.

[KRD+03]	� U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and J. D.
Owens, “Programmable stream processors”, IEEE Transaction on Computer (TC),
vol. 3, no. 8, pp. 54–62, 2003.

[KSK06]	� M. G. Koziri, G. I. Stamoulis, and I. X. Katsavounidis, “Power reduction in an
h.264 encoder through algorithmic and logic transformations”, in Proceedings of
the 2006 ACM/IEEE International Symposium on Low Power Electronics and De-
sign (ISLPED), October 2006, pp. 107–112.

[KXVK06]	� C. Kim, J. Xin, A. Vetro, and C.-C. J. Kuo, “Complexity scalable motion estima-
tion for h.264/avc”, in Proceedings of the 2006 SPIE Visual Communications and
Image Processing (VCIP), January 2006, pp. 109–120.

[LBM+06]	� P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Enhanced architec-
tures, design methodologies and CAD tools for dynamic reconfiguration of Xilinx
FPGAs”, in Proceedings of the 16th International Conference on Field-Program-
mable Logic and Applications (FPL), August 2006, pp. 1–6.

[LCHC03]	� F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation for power-efficient
fpgas”, in ACM Internaltional Symposium on Field Programmable Gate Arrays
(FPGA), 2003, pp. 175–184.

[LH02]	� Z. Li and S. Hauck, “Configuration prefetching techniques for partial reconfigu-
rable coprocessor with relocation and defragmentation”, in Proceedings of 8th
international symposium on Field Programmable Gate Arrays (FPGA), February
2002, pp. 187–195.

Bibliography

www.manaraa.com

216

[LK06]	� W. H. Lee and J. H. Kim, “H.264 implementation with embedded reconfigurable
architecture”, in IEEE International Conference on Computer and Information
Technology (CIT), 2006, pp. 247–251.

[LL08]	� J. Lamoureux and W. Luk, “An overview of low-power techniques for field-pro-
grammable gate arrays”, in IEEE NASA/ESA Conference on Adaptive Hardware
and Systems, 2008, pp. 338–345.

[LLH07]	� F. Li, Y. Lin, and L. He, “Field programmability of supply voltages for fpga power
reduction”, IEEE Transaction on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 26, no. 4, pp. 752–764, 2007.

[LPL+03]	� Z. G. Li, F. Pan, K. P. Lim, G. Feng, X. Lin, and S. Rahardja, “Adaptive unit layer
rate control for jvt”, in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T VCEG
7th Meeting, March 2003, pp. Document JVT–G012r1.

[LPMS97]	� C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool for eval-
uating and synthesizing multimedia and communications systems”, in Proceed-
ings of the 36th annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), December 1997, pp. 330–335.

[LSV06]	� R. Lysecky, G. Stitt, and F. Vahid, “Warp processors”, ACM Transactions on De-
sign Automation of Electronic Systems (TODAES), vol. 11, no. 3, pp. 659–681,
June 2006.

[LSW04]	� K.-P. Lim, G. Sullivan, and T. Wiegand, “Text description of joint model refer
methods and decoding concealment methods”, in Joint Video Team (JVT) of ISO/
IECMPEG & ITU-T VCEG Meeting, March 2004, pp. Document JVT–K049.

[LT07]	� A. Leontaris and A. M. Tourapis, “Rate control reorganization in the jm (joint
model) reference software”, in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T
VCEG 23rd Meeting, April 2007, pp. Document JVT–W042.

[LT08]	� A. Leontaris and A. M. Tourapis, “Rate control for video coding with slice type
dependencies”, in Proceedings of the 2008 International Conference on Image
Processing (ICIP), October 2008, pp. 2792–2795.

[LWW+03]	� K. P. Lim, S. Wu, D. J. Wu, S. Rahardja, X. Lin, F. Pan, and Z. G. Li, “Fast inter
mode selection”, in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T VCEG 9th
Meeting, 2003, pp. Document JVT–I020.

[Lys07]	� R. Lysecky, “Low-power warp processors for power efficient high-performance
embedded systems”, in Proceedings of the 10th conference on Design, Automation
and Test in Europe (DATE), 2007, pp. 141–146.

[MAWL03]	� B. Meng, O. Au, C.-W. Wong, and H.-K. Lam, “Efficient intra-prediction mode
selection for 4x4 blocks in h.264”, in Proceedings of the 2003 International Con-
ference on Multimedia and Expo (ICME), July 2003, pp. III–521–III–524.

[May04]	� F. May, “Pact xpp virtual platform based on axys maxsim 5.0”, in PACT Corpora-
tion, Revision 0.3 2004, pp. 12–12.

[MBNN10]	� J. Meehan, S. Busch, J. Noel, and F. Noraz, “Multimedia ip architecture trends
in the mobile multimedia consumer device”, Elsevier Signal Processing: Image
Communication (SPIC), vol. 25, no. 5, pp. 317–324, 2010.

[MC07]	� K.-Y. Min and J.-W. Chong, “A memory and performance optimized architecture
of deblocking filter in h.264/avc”, in International Conference on Multimedia and
Ubiquitous Engineering (MUE), 2007, pp. 220–225.

[Mic27]	� A. Michelson, Studies in Optics. Chicago, IL, USA: University of Chicago Press,
1927.

[Mic10a]	� Microsoft, “Audio video standard”, http://www.avs.org.cn/en/, 2010.
[Mic10b]	� Microsoft, “The vc1 video coding standard”, http://www.microsoft.com/windows/

windowsmedia/howto/articles/vc1techoverview.aspx, 2010.
[MM05]	� S. Mondal and S. Memik, “Fine-grain leakage optimization in sram based fpgas”,

in IEEE Great Lakes Symposium on VLSI (GLSVLSI), 2005, pp. 238–243.

Bibliography

www.manaraa.com

217

[MMFS06]	� M. Martina, G. Masera, L. Fanucci, and S. Saponara, “Hardware co-processors
for real-time and high-quality h.264/avc video coding”, in 14th European Signal
Processing Conference (EUSIPCO), 2006, pp. 200–204.

[MRS07]	� S. Momcilovic, N. Roma, and L. Sousa, “An asip approach for adaptive avc mo-
tion estimation”, in Proceedings of the IEEE Conference on Ph.D. Research in
Microelectronics and Electronics (PRIME), July 2007, pp. 165–168.

[MSH+08]	� S. Mochizuki, T. Shibayama, M. Hase, F. Izuhara, K. Akie, M. Nobori, R. Imaoka,
H. Ueda, K. Ishikawa, and H. Watanabe, “A 64 mw high picture quality h.264/
mpeg-4 video codec ip for hd mobile applications in 90 nm cmos”, IEEE Journal
of Solid-State Circuits (JSSC), vol. 43, no. 11, pp. 2354–2362, 2008.

[MSM+96]	� S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, and J. Yamada, “A 1v multi-
threshold voltage cmos dsp with an efficient power management technique for
mobile phone application”, in 42nd IEEE International Solid-State Circuits Con-
ference (ISSCC), 1996, pp. 168–169.

[MVM05]	� B. Mei, F. J. Veredas, and B. Masschelein, “Mapping an h.264/avc decoder onto
the adres reconfigurable architecture”, in 15th International Conference on Field
Programmable Logic and Applications (FPL), 2005, pp. 622–625.

[MYN+06]	� A. Major, Y. Yi, I. Nousias, M. Milward, S. Khawam, and T. Arslan, “H.264 de-
coder implementation on a dynamically reconfigurable instruction cell based ar-
chitecture”, in IEEE International SOC Conference, 2006, pp. 49–52.

[Ne08]	� T. Nishimura and etAl, “Power reduction techniques for dynamically reconfigu-
rable processor arrays”, in 18th International Conference on Field Programmable
Logic and Applications (FPL), 2008, pp. 305–310.

[Net04a]	� N. Nethercote, “Dynamic binary analysis and instrumentation”, in PhD Disserta-
tion, University of Cambridge, November 2004.

[Net04b]	� N. Nethercote, “Valgrind Tool Suite”, http://valgrind.org, 2004.
[Nok10]	� Nokia Research Center, “Mobile 3d video”, http://research.nokia.com/page/4988,

2010.
[NWKS09]	� M. Nadeem, S. Wong, G. Kuzmanov, and A. Shabbir, “A high-throughput, ar-

ea-efficient hardware accelerator for adaptive deblocking filter in h.264/avc”, in
IEEE/ACM/IFIP 7th Workshop on Embedded Systems for Real-Time Multimedia
ESTIMedia, October 2009, pp. 18–27.

[OBL+04]	� J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stock-
hammer, and T. Wedi, “Video coding with H.264/AVC: Tools, performance, and
complexity”, IEEE Circuits and Systems Magazine, vol. 4, no. 1, pp. 7–28, 2004.

[PBV06]	� E. M. Panainte, K. Bertels, and S. Vassiliadis, “Compiler-driven FPGA-area allo-
cation for reconfigurable computing”, in Proceedings of the conference on Design,
Automation and Test in Europe (DATE), March 2006, pp. 369–374.

[PBV07]	� E. M. Panainte, K. Bertels, and S. Vassiliadis, “The Molen compiler for reconfigu-
rable processors”, ACM Transactions on Embedded Computing Systems (TECS),
vol. 6, no. 1, February 2007.

[PC08]	� I. Park and D. W. Capson, “Improved inter mode decision based on residue in
h.264/avc”, in Proceedings of the 2008 International Conference on Multimedia
and Expo (ICME), 2008, pp. 709–712.

[PH06]	� M. Parlak and I. Hamzaoglu, “An efficient hardware architecture for h.264 adap-
tive deblocking filter algorithm”, in First NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), 2006, pp. 381–385.

[Phi10]	� Philips Nexperia, Inc., “Nexperia documentation”, http://www.nxp.com, 2010.
[PLR+05]	� F. Pan, X. Lin, S. Rahardja, K. Lim, Z. Li, D. Wu, and S. Wu, “Fast mode decision

algorithm for intraprediction in h.264/avc video coding”, IEEE Transactions on
Circuits and Systems for Video Technology (TCSVT), vol. 15, no. 7, pp. 813–822,
2005.

[PP08]	� J. Peddersen and S. Parameswaren, “Energy driven application self-adaptations at
run-time”, Journal of Computers (JC), vol. 3, no. 3, pp. 14–24, 2008.

Bibliography

www.manaraa.com

218

[Pra01]	� W. K. Pratt, Digital Image Processing. Los Altos, California, USA: John Willy &
Sons Inc., 2001.

[PSB05]	� R. Puri, L. Stok, and S. Bhattacharya, “Keeping hot chips cool”, in Proceedings of
42nd ACM IEEE Design Automation Conference (DAC), 2005, pp. 285–288.

[PWY05]	� K. K. W. Poon, S. J. E. Wilton, and A. Yan, “A detailed power model for field-pro-
grammable gate arrays”, ACM Transaction on Design Automation of Electronic
Systems (TODAES), vol. 10, no. 2, pp. 279–302, 2005.

[PYL06]	� F. Pan, H. Yu, and Z. Lin, “Scalable fast rate-distortion optimization for h.264-
avc”, EURASIP Journal on Applied Signal Processing (EURASIP), pp. 117–117,
January 2006.

[Qe07]	� Y. Qu and etAl, “Using dynamic voltage scaling to reduce the configuration en-
ergy of run time reconfigurable devices”, in Proceedings of the 10th conference on
Design, Automation and Test in Europe (DATE), 2007, pp. 1–6.

[RB05]	� C. A. Rahman and W. Badawy, “Umhexagons algorithm based motion estimation
architecture for h.264/avc”, in Proceedings of the 5th International Workshop on
System-on-Chip for Real-Time Applications, July 2005, pp. 207–210.

[Ric03]	� I. E. Richardson, H.264 and MPEG-4 Video Compression. John Wiley & Sons,
2003.

[Ric10]	� I. E. Richardson, The H.264 Advanced Video Compression Standard. John Wiley
& Sons, 2010.

[RP04]	� A. Rahman and V. Polavarapuv, “Evaluation of low leakage design techniques
for field programmable gate arrays”, in ACM Internaltional Symposium on Field
Programmable Gate Arrays (FPGA), 2004, pp. 23–30.

[Sam05]	� Samsung Electronics Company, Ltd, “OneNAND speci-
fication”, http://origin2.samsung.com/global/system/busi-
n e s s / s e m i c o n d u c t o r / p r o d u c t / 2 0 0 7 / 6 / 11 / O n e N A N D / 2 5 6 M b i t /
KFG5616Q1A/ds_kfg5616x1a_66mhz_rev12.pdf, 2005.

[SCL06]	� S. Y. Shih, C. R. Chang, and Y. L. Lin, “A near optimal deblocking filter for h.264
advanced video coding”, in Asia and South Pacific Conference on Design Automa-
tion (ASP-DAC), 2006, pp. 170–175.

[SF04]	� S. Saponara and L. Fanucci, “Data-adaptive motion estimation algorithm and vlsi
architecture design for low-power video systems”, IEE Computers and Digital
Techniques, vol. 151, no. 1, pp. 51–59, January 2004.

[SGS98]	� S. Sawitzki, A. Gratz, and R. G. Spallek, “CoMPARE: A simple reconfigurable
processor architecture exploiting instruction level parallelism”, in 5th Austral-
asian Conference on Parallel and Real-Time Systems (PART), September 1998,
pp. 213–224.

[SHS08]	� M. Z. S. Hu, Z. Zhang and T. Sheng, “Optimization of memory allocation for
h.264 video decoder on digital signal processors”, Congress on Image and Signal
Processing (CISP), vol. 2, pp. 71–75, 2008.

[SJ04]	� J. W. Suh and J. Jeong, “Fast sub-pixel motion estimation techniques having lower
computational complexity”, IEEE Transactions on Consumer Electronics (TCE),
vol. 50, no. 3, pp. 968–973, 2004.

[SJJL09]	� D. Schneider, M. Jeub, Z. Jun, and S. Li, “Advanced h.264/avc encoder optimiza-
tions on a tms320dm642 digital signal processor”, in DSP’09: Proceedings of the
16th international conference on Digital Signal Processing, 2009, pp. 1187–1190.

[SKB02]	� L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power consumption in
virtex[tm]-ii fpga family”, in ACM Internaltional Symposium on Field Program-
mable Gate Arrays (FPGA), 2002, pp. 157–164.

[SLIS07]	� Y. Song, Z. Liu, T. Ikenaga, and S.Goto, “Low-power partial distortion sorting fast
motion estimation algorithms and vlsi implementations”, IEIEC Transactions on
Information and Systems (IETISY), vol. E90-D, no. 1, pp. 108–117, January 2007.

Bibliography

www.manaraa.com

219

[SN06]	� L. Salgado and M. Nieto, “Sequence independent very fast mode decision algo-
rithm on h.264/avc baseline profile”, in Proceedings of the 2006 International
Conference on Image Processing (ICIP), October 2006, pp. 41–44.

[Ste09]	� G. R. Stewart, “Implementing video compression algorithms on reconfigurable
devices”, in PhD Dissertation, University of Glasgow, United Kingdom, June
2009.

[STM06]	� STMicroelectronics, Inc., “Stmicroelectronics: Nomadik mobile multimedia ap-
plication processor”, http://www.alldatasheet.com/datasheet-pdf/pdf/134714/ST-
MICROELECTRONICS/STN8815.html, 2006.

[Str]	� Stretch Inc., “S6000 family software configurable processors”, http://www.
stretchinc.com/products/s6000.php.

[SZFH08]	� Y. Sun, Y. Zhou, Z. Feng, and Z. He, “A novel incremental scheme for h.264 video
coding”, in Proceedings of the 2008 International Conference on Image Process-
ing (ICIP), October 2008, pp. 1612–1615.

[TCW+05]	� T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, and P. Cheung,
“Reconfigurable computing: architectures and design methods”, IEE Proceedings
Computers & Digital Techniques, vol. 152, no. 2, pp. 193–207, March 2005.

[Te06]	� T. Tuan and et, “A 90nm low-power fpga for battery-powered applications”, in
ACM Internaltional Symposium on Field Programmable Gate Arrays (FPGA),
2006, pp. 3–11.

[Ten]	� Tensilica Inc., “Tensilica: Customizable processor cores for the dataplane”, http://
www.tensilica.com/.

[Tex10a]	� Texas Instruments, Inc., “Omap_tm technology”, http://focus.ti.com/general/docs/
gencontent.tsp?contentId=46946&DCMP=WTBU&HQS=Other+OT+omap,
2010.

[Tex10b]	� Texas Instruments, Inc., “Ti documentation”, http://www.ti.com/, 2010.
[THLW03]	� P.-L. Tai, S.-Y. Huang, C.-T. Liu, and J.-S. Wang, “Computation-aware scheme

for software-based block motion estimation”, IEEE Transactions on Circuits and
Systems for Video Technology (TCSVT), vol. 13, no. 9, pp. 901–913, September
2003.

[TL03]	� T. Tuan and B. Lai, “Leakage power analysis of a 90nm fpga”, in IEEE Custom
Integrated Circuits Conference, 2003, pp. 57–60.

[Tou02]	� A. M. Tourapis, “Enhanced predictive zonal search for single and multiple frame
motion estimation”, in Proceedings of the 2002 SPIE Visual Communications and
Image Processing (VCIP), January 2002, pp. 1069–1079.

[VS07]	� S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Reconfigurable Comput-
ing. Springer Publishing Company, Incorporated, 2007.

[VSWM05]	� F. J. Veredas, M. Scheppler, and B. M. W. Moffat, “Custom implementation of
the coarse-grained reconfigurable adres architecture for multimedia purposes”, in
15th International Conference on Field Programmable Logic and Applications
(FPL), 2005, pp. 106–11.

[VWG+04]	� S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. Panainte,
“The MOLEN polymorphic processor”, IEEE Transactions on Computers (TC),
vol. 53, no. 11, pp. 1363–1375, November 2004.

[WAW07]	� C.-W. Wong, O. C. Au, and R. C.-W. Wong, “Advanced real-time rate control in
h.264”, in Proceedings of the 2007 International Conference on Image Processing
(ICIP), October 2007, pp. I–69–I–72.

[WC96]	� R. Wittig and P. Chow, “OneChip: an FPGA processor with reconfigurable logic”,
in IEEE Symposium on FPGAs for Custom Computing Machines, April 1996, pp.
126–135.

[WOZ02]	� Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing And Communications.
Upper Saddle River, New Jersey, USA: Prentice-Hall Inc., 2002.

Bibliography

www.manaraa.com

220

[WSBL03]	� T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, “Overview of the h.264/
avc video coding standard”, IEEE Transactions on Circuits and Systems for Video
Technology (TCSVT), vol. 13, no. 7, pp. 560–576, 2003.

[WSK+07]	� J.-H. Woo, J.-H. Sohn, H. Kim, J. Jeong, E. Jeong, S. J. Lee, and H.-J. Yoo, “A low
power multimedia soc with fully programmable 3d graphics and mpeg4/h.264/
jpeg for mobile devices”, in Proceedings of the 2006 ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED), 2007, pp. 238–243.

[WSLL07]	� X. Wang, J. Sun, Y. Liu, and R. Li, “Fast mode decision for h.264 video encoder
based on mb motion characteristic”, in Proceedings of the 2007 International Con-
ference on Multimedia and Expo (ICME), July 2007, pp. 372–375.

[WUS+08]	� K. Willner, K. Ugur, M. Salmimaa, A. Hallapuro, and J. Lainema, “Mobile 3d
video using mvc and n800 internet tablet”, in 3DTV Conference: The True Vi-
sion—Capture, Transmission and Display of 3D Video, May 2008, pp. 69 –72.

[Xil05]	� Xilinx, Inc., “Xilinx development system: Partial reconfiguration”, http://toolbox.
xilinx.com/docsan/xilinx8/de/dev/partial.pdf, April 2005.

[Xil07]	� Xilinx, Inc., “Virtex-II platform FPGA user guide, v2.2”, http://www.xilinx.com/
support/documentation/user_guides/ug002.pdf, November 2007.

[Xil08a]	� Xilinx, Inc., “Spartan and Spartan-XL FPGA families data sheet, v1.8”, http://
www.xilinx.com/support/documentation/data_sheets/ds060.pdf, June 2008.

[Xil08b]	� Xilinx Inc., “Virtex-4 FPGA user guide, v2.6”, http://www.xilinx.com/support/
documentation/user_guides/ug070.pdf, December 2008.

[Xil09]	� Xilinx, Inc., “Virtex-4 FPGA configuration user guide, v1.11”, http://www.xilinx.
com/support/documentation/user_guides/ug071.pdf, June 2009.

[Xil10a]	� Xilinx, Inc., “Xilinx documentation”, http://www.xilinx.com/support/documenta-
tion, 2010.

[Xil10b]	� Xilinx, Inc., “Xilinxpowersolutions”, http://www.xilinx.com/products/design_re-
sources/power_central, 2010.

[Xip10]	� Xiph.org, “Test Media, Video Sequences”, http://media.xiph.org/video/derf, 2010.
[XPP02]	� XPP_Team, “The xpp white paper”, in PACT Corporation, Release 2.1 2002, pp.

1–4.
[YCL05]	� Z. Yang, H. Cai, and J. Li, “A framework for fine-granular computational-com-

plexity scalable motion estimation”, in Proceedings of the 2005 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), May 2005, pp. 5473–5476.

[YCW09]	� L. Yu, S. Chen, and J. Wang, “Overview of avs-video coding standards”, Signal
Processing: Image Communication, Special Issue on AVS and its Application,
vol. 24, no. 4, pp. 247–262, April 2009.

[Yu04]	� A. C. Yu, “Efficient block-size selection algorithm for inter-frame coding in h.264/
mpeg-4 avc”, in Proceedings of the 2004 International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), May 2004, pp. III169–III172.

[YWV05]	� S. Yang, W. Wolf, and N. Vijaykrishnan, “Power and performance analysis of mo-
tion estimation based on hardware and software realizations”, IEEE Transactions
on Computers (TC), vol. 54, no. 6, pp. 714–726, June 2005.

[YZLS05]	� X. Yi, J. Zhang, N. Ling, and W. Shang, “Improved and simplified motion estima-
tion for jm”, in Joint Video Team (JVT) of ISO/IECMPEG & ITU-T VCEG 16th
Meeting, July 2005, pp. Document JVT–P021.

[Ze07]	� P. Zipf and etAl, “A power estimation model for an fpga-based softcore proces-
sor”, in 17th International Conference on Field Programmable Logic and Applica-
tions (FPL), 2007, pp. 171–176.

[ZuHNS07]	� S. M. Ziauddin, I. ul Haq, M. Nadeem, and M. Shafique, “Method for providing
low cost robust operational control for video encoders (US Patent))”, Patent Pub.
No. US-2007-0206674-A1, Class: 375240050 (USPTO), 2007.

[ZWFS07]	� L. Zhuo, Q. Wang, D. D. Feng, and L. Shen, “Optimization and implementation of
h.264 encoder on dsp platform”, in IEEE International Conference on Multimedia
and Expo (ICME), July 2007, pp. 232–235.

Bibliography

www.manaraa.com

221

A
ACCoReS, 94–96, 100–104
Adaptive, 72, 95, 96, 104, 105, 108, 111, 118
Application, 69–72, 74–78, 121
Application Architectural Adaptations, 69, 70,

72, 75
Architecture, 57, 60, 63, 66, 74, 75, 77, 78,

121, 184
ASIC, 114

B
Bitstream, 77
Bus Connector, 64, 66

C
CAVLC, 72, 76, 77
cISA, 75
Clip3, 76, 87
CollapseAdd, 76, 87
Common Intermediate Format, 2, 15, 78, 79,

207
Complexity Reduction Scheme, 24, 25, 95, 96,

100, 104, 169
Computational Complexity, 25, 95, 96
Cond, 76, 83, 87
Constant Bit Rate, 194
Custom Instruction, 8, 10–13, 23, 32, 35–41,

45, 46, 56, 57, 59, 60, 63–65, 67, 69, 71,
75, 76, 80, 81, 83–87, 121, 183–185, 188,
203–206

D
Data Flow Diagram, 78
Data Path, 69, 71, 73, 75, 76, 80, 81, 83–87,

121, 184, 185, 188
Data Path Container, 35, 36, 42, 63, 66, 81,

188, 204
Deblocking Filter, 21, 23, 24, 27, 28, 32, 52,

72, 76, 77, 81–84, 121

Digital Signal Processor, 4, 208
Discrete Cosine Transform, 20, 32, 72, 76, 86
Dynamic Power, 65

E
Early Mode Exclusion, 96, 97, 100, 102
enBudget, 105, 110–112, 114, 115, 117–121
Energy-Minimizing Instruction Set, 126, 133,

136, 139
Energy-Quality Class, 10, 11, 13, 27, 46, 53,

60, 61, 69, 121, 122, 185–188
Enhanced Predictive Zonal Search, 26, 173
EPZS, 110
EQ-Class, 105, 109–115, 117, 119
Error, 117

F
Fast Mode Decision, 24
Fast Mode Prediction, 96, 97, 99
FPGA, 87, 120
Fractional-pixel Motion Estimation, 22
Frame, 78, 89, 92, 94, 102, 103, 111, 115, 119,

121
Full Search, 71, 105, 106, 110, 112, 113, 186
Functional Blocks, 17, 24, 51, 54, 71

G
General Purpose Processor, 6
GOP, 111, 115, 121
Group of Pictures, 17–19, 57, 61, 111, 117,

121, 186, 193

H
H.264, 69–72, 74, 76–78, 80, 81, 87, 89, 95,

104, 105, 110, 121
Hadamard Transform, 19, 21, 64, 72, 76, 77,

86
Hardware, 74, 75, 77, 78, 120
Hardware Pressure, 74, 75, 77, 78

Index

M. Shafique, J. Henkel, Hardware/Software Architectures for Low-Power Embedded
Multimedia Systems,
DOI 10.1007/978-1-4419-9692-3, © Springer Science+Business Media LLC 2011

www.manaraa.com

222

Human Visual System, 53, 55, 69, 87, 95, 121
HVS, 87, 88, 92, 95, 96, 104, 121, 122

I
(I)DCT4x4, 76
(I)HT_2x2, 75, 76
I16x16, 97, 98
I4x4, 89, 97–100, 102, 103
I-MB, 72, 73, 76, 89, 92–94, 96, 100
Implementation Version, 34, 36–41, 62–67,

83, 126, 131–136, 138, 139, 142, 145, 146,
150–152, 184, 204, 205

Instruction Set, 4, 10, 11, 13, 33, 34, 57, 58,
60, 63, 66, 75, 183–185, 187, 212

Integer-pixel Motion Estimation, 22
Internal Configuration Access Port, 30, 164,

166
IPred, 71, 72, 76
IPred_HDC, 76
IPred_VDC, 76

J
Joint Video Team, 17, 213, 215, 216, 220

L
Leakage Power, 66
Level, 102, 103, 111, 112, 115, 119, 121
LF_4, 76, 83, 87
LF_BS4, 76, 82, 83, 85
Low-Power, 80, 121

M
Macroblock, 69, 70, 76, 81, 82, 92, 95, 112,

120–122, 186, 187
Macroblock Categorization, 92
MC_Hz_4, 76, 86
Mean Bit Estimation Error, 200
Mode Decision, 50, 51, 54, 67, 72, 75, 76, 80,

122, 185, 186
Mode Elimination, 96, 99, 100
Motion Compensation, 20, 22, 23, 71, 76, 77,

79, 80, 86
Motion Estimation, 10, 11, 13, 17, 19, 21–25,

27, 32, 45, 46, 50–55, 60, 61, 67, 69, 71,
75–77, 80, 85, 89, 95, 96, 104, 105, 111,
114, 117–122, 185, 186, 206, 209, 210

Motion Vector, 52, 106
Multimedia MPSoC, 6
Multiview Video Coding, 2, 51, 53, 188

O
On-Demand Interpolation, 72
Overhead, 104, 120, 121

P
P16x16, 89, 93, 94, 97–100, 103
P16x8, 89, 99, 100
P4x4, 89, 100
P4x8, 89, 100
P8x16, 89, 99, 100
P8x4, 89, 100
P8x8, 89, 93, 94, 97–100, 103, 104
Performance, 121
P-MB, 72, 76, 89, 92, 96
PointFilter, 76, 87
Prediction, 71, 73, 76, 77, 86, 96, 97, 99, 100,

106, 107, 109, 112–114
Processing Time Distribution, 51
Processor, 69
Profile, 70
Proportional Gain, 194
PSNR, 100–105, 109–113, 117–119

Q
QCIF, 71, 73, 78, 101, 108, 119–121
QuadSub, 76
Quantization Parameter, 20, 57, 60, 61, 69, 77,

78, 89, 90, 95, 109, 122, 185, 187, 192, 193
Quarter Common Intermediate Format, 2, 78

R
Rate Controller, 77, 78
Rate Distortion, 17, 19, 51, 54, 72, 75, 192
RDO, 72, 75–77, 80, 89, 94–96, 99
RDO-MD, 72, 75–77, 80, 89, 94–96, 99, 100,

102–104
Reconfigurable Functional Unit, 32
Reconfigurable Processor, 11, 28, 32, 43, 56,

63, 69, 130, 155, 166, 176, 204
Reconfiguration, 34, 41, 66, 87
Repack, 75, 76, 80, 86, 87
RISPP, 71
Rotating Instruction Set Processing Platform,

13, 34, 35, 212
Run-Time, 115

S
SAD16x16, 76, 85
SADrow, 76, 85, 87
SATD, 71, 75, 85
SATD4x4, 76, 85, 86
Spatial, 87, 91, 92, 95
Standard Definition, 2
State-of-the-art, 8, 10, 24, 26, 46, 58
Sum of Absolute Differences, 19, 55, 71, 76,

85, 153
Sum of Absolute Transformed Differences,

19, 71, 85

Index

www.manaraa.com

223

T
Temporal, 87, 91, 92, 95
Transform, 76

U
UMHexagonS, 71, 110, 112, 117–119, 186
Unsymmetrical-cross Multi-Hexagon-grid

Search, 25, 173

V
Variable Bit Rate, 193
Variable Length Coding, 21, 72
Video Coding, 49, 51–53, 188
Video Conferencing, 13, 50, 51
Video Encoder, 53, 54, 76, 87

X
Xilinx Synthesis Technology, 158

Index

	Contents
	Abbreviations and Definitions
	List of Figures
	List of Tables
	List of Algorithms
	Chapter-1
	Introduction
	1.1 Trends and Requirements of Advanced Multimedia Systems
	1.1.1 Summarizing

	1.2 Trends and Options for Multimedia Processing
	1.3 Summary of Challenges and Issues
	1.4 Contribution of this Monograph
	1.5 Monograph Outline

	Chapter-2
	Background and Related Work
	2.1 Video Coding: Basics and Terminology
	2.2 The H.264 Advanced Video Codec: A Low-Power Perspective
	2.2.1 Overview of the H.264 Video Encoder and Its Functional Blocks
	2.2.2 Low-Power Architectures for H.264/AVC Video Encoder
	2.2.3 Adaptive and Low-Power Design of the Key Functional Blocks of the H.264 Video Encoder: State-of-the-Art and Their Limitations

	2.3 Reconfigurable Processors
	2.3.1 Fine-Grained Reconfigurable Fabric
	2.3.2 Leakage Power of Fine-grained Reconfigurable Fabric and the Power-Shutdown Infrastructure
	2.3.3 Custom Instructions (CIs): A Reconfigurable Processor Perspective
	2.3.4 Reconfigurable Instruction Set Processors
	2.3.5 Rotating Instruction Set Processing Platform (RISPP)
	2.3.5.1 Modular Custom Instructions (CIs) with Hierarchical Composition
	2.3.5.2 Formal Model of the Modular Custom Instructions
	2.3.5.3 Run-Time System of RISPP
	2.3.5.4 Hardware Infrastructure for Communication and Computation

	2.4 Low-Power Approaches in Reconfigurable Processors
	2.5 Summary of Related Work

	Chapter-3
	Adaptive Low-Power Architectures for Embedded Multimedia Systems
	3.1 Analyzing the Video Coding Application for Energy Consumption and Adaptivity
	3.1.1 Advanced Video Codecs: Analyzing the Tool Set
	3.1.2 Energy and Adaptivity Related Issues in H.264/AVC Video Encoder

	3.2 Energy- and Adaptivity Related Issues for Dynamically Reconfigurable Processors
	3.3 Overview of the Proposed Architectures and Design Steps
	3.4 Power Model for Dynamically Reconfigurable Processors
	3.4.1 Power Consuming Parts of a Computation- and Communication-Infrastructure in a Dynamically Reconfigurable Processor
	3.4.2 The Proposed Power Model
	3.4.3 Dynamic Power When Executing a Custom Instruction (CI)
	3.4.3.1 Leakage Power of Data Path Containers (DPCs)
	3.4.3.2 Reconfiguration Power
	3.4.3.3 Dynamic and Leakage Power of the core Instruction Set Architecture (cISA)

	3.5 Summary of Adaptive Low-Power Embedded Multimedia System

	Chapter-4
	Adaptive Low-Power Video Coding
	4.1 H.264 Encoder Application Architectural Adaptations for Reconfigurable Processors
	4.1.1 Basic Application Architectural Adaptations
	4.1.2 Application Architectural Adaptations for On-Demand Interpolation
	4.1.3 Application Architectural Adaptations for Reducing the Hardware Pressure
	4.1.4 Data Flow of the H.264 Encoder Application Architecture with Reduced Hardware Pressure

	4.2 Designing Low-Power Data Paths and Custom Instructions
	4.2.1 Designing the Custom Instruction for In-Loop Deblocking Filter
	4.2.2 Designing the Custom Instructions for Motion Estimation
	4.2.3 Designing the Custom Instruction for Motion Compensation
	4.2.4 Area Results for the Custom Instruction of H.264 Encoder

	4.3 Spatial and Temporal Analysis of Videos Considering Human Visual System
	4.3.1 HVS-based Macroblock Categorization
	4.3.2 QP-based Thresholding
	4.3.3 Summary of Spatial and Temporal Analysis of Videos Considering Human Visual System

	4.4 An HVS-Based Adaptive Complexity Reduction Scheme
	4.4.1 Prognostic Early Mode Exclusion
	4.4.2 Hierarchical Fast Mode Prediction
	4.4.3 Sequential RDO Mode Elimination
	4.4.4 Evaluation of the Complexity Reduction Scheme
	4.4.4.1 In-Depth Comparison with the Exhaustive RDO-MD
	4.4.4.2 Overhead of Computing Video Sequence Statistics
	4.4.4.3 Summary of the HVS-based Adaptive Complexity Reduction Scheme

	4.5 Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme
	4.5.1 Adaptive Motion Estimator with Multiple Processing Stages
	4.5.2 enBudget: The Adaptive Predictive Energy-budgeting Scheme
	4.5.2.1 Designing Energy-Quality (EQ) Classes
	4.5.2.2 Run-time Algorithm of the enBudget Scheme

	4.5.3 Evaluation of Energy-Aware Motion Estimation with an Integrated Energy-Budgeting Scheme
	4.5.4 Comparing Adaptive Motion Estimator with and Without the enBudget Scheme
	4.5.5 Comparing UMHexagonS with and Without the enBudget Scheme
	4.5.5.1 Frame-level and MB-Level Analysis
	4.5.5.2 Energy Comparison for Different Fabrication Technologies
	4.5.5.3 Overhead of enBudget and Hardware Design
	4.5.5.4 Summary of the Energy-Aware Motion Estimation and Energy-budgeting Scheme

	4.6 Summary of Low-power Application Architecture

	Chapter-5
	Adaptive Low-power Reconfigurable Processor Architecture
	5.1 Motivational Scenario and Problem Identification
	5.1.1 Summary of the Motivational Scenario and Problem Identification

	5.2 Run-time Adaptive Energy Management with the Novel Concept of Custom Instruction Set Muting
	5.2.1 Concept of Muting the Custom Instructions
	5.2.2 Power-shutdown Infrastructure for the Muted Custom Instructions
	5.2.3 Run-time Adaptive Energy Management
	5.2.3.1 Summary of the Run-time Adaptive Energy Management and CI Muting

	5.3 Determining an Energy-minimizing Instruction Set
	5.3.1 Formal Problem Modeling and Energy Benefit Function
	5.3.2 Algorithm for Choosing CI Implementation Versions
	5.3.3 Evaluation and Results for Energy-Minimizing Instruction Set
	5.3.3.1 Evaluating the Adaptive Energy Management Scheme on Different Technologies
	5.3.3.2 Evaluating the Adaptive Energy Management Scheme for Encoding of different Resolutions
	5.3.3.3 Hardware Implementation
	5.3.3.4 Summary of Energy Minimizing Instruction Set

	5.4 Selective Instruction Set Muting
	5.4.1 Problem Description and Motivational Scenarios
	5.4.2 Operational Flow for Selective Instruction Set Muting
	5.4.3 Analyzing the Energy Benefit Function of Muting
	5.4.4 Hot Spot Requirement Prediction: Computing Weighting Factors for CIs
	5.4.5 Evaluation of Selective Instruction Set Muting
	5.4.5.1 Overhead of the Selective Instruction Set Muting Technique
	5.4.5.2 Summary of Selective Instruction Set Muting

	5.5 Summary of Adaptive Low-power Reconfigurable Processor Architecture

	Chapter-6
	Power Measurement of the Reconfigurable Processors
	6.1 Power Measurement Setup
	6.2 Measuring the Power of Custom Instructions
	6.2.1 Flow for Creating the Power Model
	6.2.2 Test Cases for Power Measurements
	6.2.3 Results for Power Measurement and Estimation

	6.3 Measuring the Power of the Reconfiguration Process
	6.3.1 Power Consumption of EEPROM
	6.3.2 Power Consumption of the Reconfiguration via ICAP

	6.4 Summary of the Power Measurement of the Reconfigurable Processors

	Chapter-7
	Benchmarks and Results
	7.1 Simulation Conditions and Fairness of the Comparison
	7.2 Adaptive Low-power Application Architecture
	7.2.1 Comparing Complexity Reduction Scheme to State-of-the-art and the Exhaustive RDO-MD
	7.2.2 Comparing the Energy-Aware Motion Estimation with Integrated Energy Budgeting Scheme to State-of-the-art

	7.3 Adaptive Low-power Processor Architecture
	7.3.1 Comparing the Adaptive Energy Management Scheme (Without Selective Instruction Set Muting) to RISPP with Performance Maximization [BSH08c]
	7.3.2 Applying the Adaptive Energy Management Scheme (Without Selective Instruction Set Muting) to Molen [VWG + 04] Reconfigurable Processor
	7.3.3 Comparing the Adaptive Energy Management Scheme (with Selective Instruction Set Muting) to State-of-the-art Hardware-oriented Shutdown

	7.4 Summary of the Benchmarks and Comparisons

	Chapter-8
	Conclusion and Outlook
	8.1 Monograph Summary
	8.2 Future Work

	Bibliography
	Index

